TORQUEMASTER BRUSH SERVO MOTORS

2100 SERIES

Torque Systems specializes in the design of high performance brush Torque Systems specializes in the design of high performance brush servo motors that provide efficiency, flexibility of application, and a long and trouble-free service life. Our TORQUEMASTER® 2100 series is no exception, when integrated with high performance brush amplifiers, TORQUE-MASTER 2100 Series brush servo motors provide effective and highly efficient motion control solutions for a wide range of applications including factory automation, packaging, robotics, machine tools, medical instrumentation and more.

Performance Benefits:

- Delivers smooth and superior low speed performance, and maximum power ratings with low thermal resistance for high speed performance.
- Maximum torque in a smaller package
- Rugged industrial construction
- Continuous torque ratings up to 53 oz.-in with speeds up to 6500 RPM (no load)
- Peak torque ratings up to 300 oz.-in.
- High torque-to-inertia ratio delivers maximum torque per frame size
- Numerous custom options available

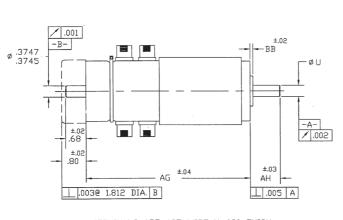
Design Features:

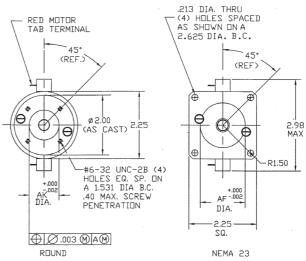
- Latest in high performance permanent magnet technology, and are available in eight standard windings as well as custom windings
- Motors can be customized to fit your exact application with tachometers, encoders, brakes and other options.
- Specialized machinery designs can install or retrofit servomotor with little or no restrictions
- Multiple configurations accommodate flexible design considerations
- Performance enhancement and feature convenience that allows Torque Systems motors to be incorporated into a broader range of applications

BRUSH SERVO MOTOR CHARACTERISTICS

	SYMBOL		UNITS	2105	2110	2115	2120	2130
	T _C	Cont. Torque	Oz-In	11	18	30	38	53
	T _P	Peak Torque	Oz-In	50	100	150	200	300
	T _F	Static Friction	Oz-In	3	3	3	3	3
	F _i	Viscous Friction	Oz-In/KRPM	0.2	0.3	0.3	0.4	0.5
	T_R	Cogging Torque	Oz-In	0.2	0.3	0.5	0.5	0.5
	J_{M}	Inertia	Oz-In-sec ²	0.0018	0.0031	0.0044	0.0057	0.0083
	R _{TH}	Thermal Res	Deg C/watt	6.9	6.2	5	4.5	3.8
	T _{TH}	Thermal Time	Minute	10	10	15	15	20
	t_{m}	Mech Time	Millisec	24.3	12.19	8.62	8.07	7.20
	t _e	Elect Time	Millisec	1.6	1.9	2.1	2.1	2.2
	F _C	Commutation	Watts x Oz In / Ar	mps 488	722	1260	1548	2116
	Wt	Weight	Lbs	1.9	2.9	3.1	3.3	4.3
WWW.DING	Note: All	values at 25°C Ambient.						
WINDING A	K _T	Torq. Sens.	Oz-In/Amp	2.27	3.8	6.12	7.74	11.2
•	R _A	Arm. Resis.	Ohms	0.29	0.40	0.52	0.60	0.80
	K _V	Back E.M.F	Volts/KRPM	1.7	2.8	4.5	5.7	8.3
	F _C /K _T	P _b	Watts	215	190	206	200	189
B	K _T	Torq. Sens.	Oz-In/Amp	2.77	4.7	7.48	9.46	13.6
	R _A	Arm. Resis.	Ohms	0.44	0.61	0.77	0.89	1.18
	K _V	Back E.M.F	Volts/KRPM	2	3.5	5.5	7.0	10.1
	F_{C}/K_{T}	P _b	Watts	176	154	168	164	156
C	K _T	Torq. Sens.	Oz-In/Amp	3.53	5.9	9.52	12	17.3
	R _A	Arm. Resis.	Ohms	0.70	0.97	1.25	1.44	1.92
	K _V	Back E.M.F	Volts/KRPM	2.6	4.4	7.0	8.9	12.8
	F _C /K _T	P _b	Watts	138	122	132	129	122
D	K _T	Torq. Sens.	Oz-In/Amp	4.41	7.4	11.9	15	21.7
	R_A	Arm. Resis.	Ohms	1.13	1.52	1.96	2.25	3.01
	K _V	Back E.M.F	Volts/KRPM	3.3	5.5	8.8	11.1	16.0
	F _C /K _T	P _b	Watts	111	98	106	103	98
E	K _T	Torq. Sens.	Oz-In/Amp	5.54	9.3	15	19	27
	R _A	Arm. Resis.	Ohms	1.77	2.40	3.11	3.61	4.67
	K _V	Back E.M.F	Volts/KRPM	4.1	6.9	11.1	14.0	20.0
	F_C/K_T	P_b	Watts	88	78	84	81	78
F	K _T	Torq. Sens.	Oz-In/Amp	6.93	11.7	18.7	23.6	34
	R_A	Arm. Resis.	Ohms	2.78	3.80	4.84	5.57	7.40
	K_V	Back E.M.F	Volts/RPM	5.1	8.6	13.8	17.4	25.1
	F_C/K_T	P_b	Watts	70	62	67	66	62
G	K _T	Torq. Sens.	Oz-In/Amp	8.57	14.4	23	29	42
	R_A	Arm. Resis.	Ohms	4.31	5.76	7.32	8.41	11.29
	K_V	Back E.M.F	Volts/KRPM	6.3	10.6	17.0	21.4	31.0
	F_C/K_T	P_b	Watts	57	50	55	53	50
Н	K _T	Torq. Sens.	Oz-In/Amp	10.71	18	29	36	52
	R _A	Arm. Resis.	Ohms	6.84	9.00	11.64	12.96	17.31
	K _V	Back E.M.F	Volts/KRPM	7.9	13.3	21.4	26.6	38.4
	F_C/K_T	P _b	Watts	46	40	43	43	41

Note: Continuous torque specifications obtained with motor mounted to an 10" x 10" x 0.25" alum. plate at 25 C° ambient. Typical values are within $\pm 10\%$ of rating.


For custom designs please consult factory.


All specifications subject to change without notice.

MECHANICAL SPECIFICATIONS*

*TAB TERMINALS ARE .187 WIDE X .020 THICK


DIMENSION CHART*

МОТО	R AG	AG	UI	DIA.	A	Л Н	AK	AF	BB	}
	Motor Only Inches (Metric)	Motor Tach Inches (Metric)	STD	NEMA	STD	NEMA	STD	NEMA	STD	NEMA
2105	3.13 (79.5)	4.60 (116.8)	.3750/.3745	.2500/.2495	1.00	0.77	1.000	1.500	0.10	0.06
2110	3.63 (92.2)	5.10 (129.5)	.3750/.3745	.2500/.2495	1.00	0.77	1.000	1.500	0.10	0.06
2115	4.13 (104.9)	5.60 (142.2)	.3750/.3745	.2500/.2495	1.00	0.77	1.000	1.500	0.10	0.06
2120	4.63 (117.6)	6.10 (154.9)	.3750/.3745	.2500/.2495	1.00	0.77	1.000	1.500	0.10	0.06
2130	5.63 (143.0)	7.10 (180.3)	.3750/.3745	.2500/.2495	1.00	0.77	1.000	1.500	0.10	0.06

METRIC (mm): DIMENSIONS ALL FRAME SIZES

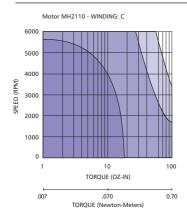
SHAFT:	DIA	8j6	MOUNTING:	PILOT	25.0
	LENGTH	25.0		B.C.	38.89
				HOLE SIZE	M4

^{*}All specifications are for reference only. Please consult the factory for certified dimension drawings. Standard Direction of Rotation: CCW rotation viewed from shaft end with red motor terminal positive with respect to black motor terminal.

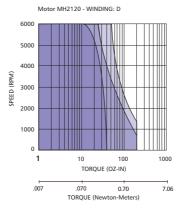
NOTE: Continuous torque specifications obtained with motor mounted to an 10''x10''x.25'' aluminum plate at 25 C° ambient. Typical values are within $\pm 10\%$ of rating.

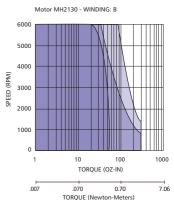
STANDARD WINDING SPEED/TORQUE CURVE DATA FOR SIZING A SERVO MOTOR

Nm = Maximum speed, continuous operation

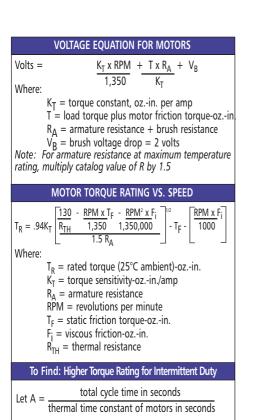

Np = Peak speed, acceleration/deceleration and intermittent duty

Tcs = Continuous stall torque

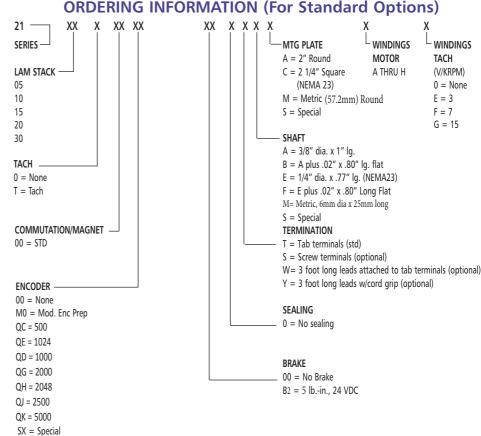

Tp = Peak torque


All specifications subject to change without notice.

TORQUE PERFORMANCE CURVES



Torque Speed Curves of other windings available, consult factory.



"on" time in seconds per cycle

thermal time constant of motor in seconds

CUSTOMIZE THE 2100 SERIES TO YOUR EXACT REQUIREMENTS

then with T_R = Rated torque for 100% duty

and T_{MAX} = Rated torque for intermittent duty $T_{MAX} = T_R x \left[\frac{1 - e^{A}}{1 - e^{B}} \right]^{1/2}$

To satisfy various applications with cost-effective solutions, 2100 Series motors are readily available with a wide range of standard capabilities. Final designs are often the result of cooperative efforts between the customer's engineering department and Torque Systems. For assistance, call your local distributor or Torque Systems direct. We look forward to meeting your custom requirements.

ASK ABOUT OTHER MOTION CONTROL SOLUTIONS & CAPABILITIES FROM TORQUE SYSTEMS

- Brushless TorqueMaster® Servo Motors
- Gearboxes/Brakes
- · Expert application engineering
- Complete repair & refurbishing services

