
PMD Resource Access Protocol
Programmer’s Reference
Performance Motion Devices, Inc.
80 Central Street

Boxborough, MA 01719

Revision 1.1, April 18, 2012

ii PMD Resource Access Protocol Programmer’s Reference

NOTICE

his document contains proprietary and confidential information of Performance Motion Devices, Inc., and is protect-
ed by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied,
or duplicated in any form, in whole or in part, without the express written permission of PMD.

The information contained in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express
written permission of PMD.

Copyright 2009-2012 by Performance Motion Devices, Inc.

Prodigy, Magellan, ION, Magellan/ION, Pro-Motion, C-Motion, and VB-Motion are registered trademarks of
Performance Motion Devices, Inc.

Warranty
PMD warrants performance of its products to the specifications applicable at the time of sale in accordance with
PMD’s standard warranty. Testing and other quality control techniques are utilized to the extent PMD deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Performance Motion Devices, Inc. (PMD) reserves the right to make changes to its products or to discontinue any
product or service without notice, and advises customers to obtain the latest version of relevant information to verify,
before placing orders, that information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty,
patent infringement, and limitation of liability.

Safety Notice
Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe
property or environmental damage. Products are not designed, authorized, or warranted to be suitable for use in life
support devices or systems or other critical applications. Inclusion of PMD products in such applications is under-
stood to be fully at the customer's risk.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must
be provided by the customer to minimize inherent procedural hazards.

Disclaimer
PMD assumes no liability for applications assistance or customer product design. PMD does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other in-
tellectual property right of PMD covering or relating to any combination, machine, or process in which such products
or services might be or are used. PMD’s publication of information regarding any third party’s products or services
does not constitute PMD’s approval, warranty or endorsement thereof.
PMD Resource Access Protocol Programmer’s Reference iii

Related Documents

Prodigy®/CME Stand-Alone Users Guide

Prodigy®/CME PCI Users Guide

Prodigy®/CME PC/104 Users Guide

Complete description of the Prodigy/CME motion cards including getting starting section, operational over-
view, detailed connector information, and complete electrical and mechanical specifications.

Magellan® Motion Processor User’s Guide

Complete description of the Magellan Motion Processor features and functions with detailed theory of its
operation.

Magellan® Motion Processor Programmer’s Command Reference

Descriptions of all Magellan Motion Processor commands, with coding syntax and examples, listed alpha-
betically for quick reference.

C-Motion® Engine Development Tools

Description of the C-Motion Engine, development environment, and software tools.

Pro-Motion® User’s Guide

User’s guide to Pro-Motion, the easy-to-use motion system development tool and performance optimizer.
Pro-Motion is a sophisticated, easy-to-use program which allows all motion parameters to be set and/or
viewed, and allows all features to be exercised.

ION Digital Drive User’s Manual

Complete description of the ION Digital Drive including getting starting section, operational overview, de-
tailed connector information, and complete electrical and mechanical specifications.

ION/CME Digital Drive User’s Manual

Complete description of the ION/CME Digital Drive including getting starting section, operational over-
view, detailed connector information, and complete electrical and mechanical specifications.

ION/B Digital Drive User’s Manual

Complete description of the ION/B Digital Drive including getting starting section, operational overview,
detailed connector information, and complete electrical and mechanical specifications.
iv PMD Resource Access Protocol Programmer’s Reference

Table of Contents

Chapter 1. Introduction . 7
1.1 PMD Resource Access Protocol Overview. 7
1.2 Scope . 7

Chapter 2. PMD Resource Access Protocol (PRP) Tutorial . 9
2.1 Resource Addressing . 9
2.2 Accessing the Communications Ports . 11
2.3 Accessing On-Card Resources. 15
2.4 Accessing Magellan-Attached Devices . 16
2.5 PRP Communication Formats . 18

Chapter 3. PRP Reference . 21
3.1 PRP Resources. 21
3.2 PRP Addresses. 22
3.3 PRP Actions and Sub-Actions . 22
3.4 PRP Packet Structure . 23
3.5 PRP Transport Layers . 25
3.6 PRP Action Reference. 29

Chapter 4. PMD C Language Library Procedures . 77
4.1 Naming Conventions . 77
4.2 Data Types . 77
4.3 Return Values . 78
4.4 C-Motion Engine Macros. 78
4.5 PMD Library Procedures . 79

Chapter 5. C-Motion Engine . 123
5.1 C-Motion Libraries . 123
5.2 Procedures Specific to the C-Motion Engine . 123
5.3 C-Motion Engine Programming . 124
5.4 The Console . 127
5.5 User Packets . 127
5.6 Exceptions . 127

Chapter 6. C-Motion . 129
6.1 C-Motion Versions . 129
6.2 Axis Handles . 129

Chapter 7. VB-Motion . 133
7.1 Visual Basic Classes . 133
7.2 Using A Magellan Attached Device. 135
7.3 Error Handling. 136

Index . 137
PMD Resource Access Protocol Programmer’s Reference v

This page intentionally left blank.
vi PMD Resource Access Protocol Programmer’s Reference

1

1.Introduction

1.1 PMD Resource Access Protocol

Overview

The PMD Resource access Protocol (PRP) is used to communicate with PMD products incorporating a C-Motion En-
gine (CME), as well as products with Ethernet interfaces. These products include the Prodigy/CME family of motion
control cards, the ION/CME digital drive, and the Ethernet/Serial ION digital drive.

PRP provides several key features in the devices where it is used:

• A wide range of hardware resources may be addressed, for example, multiple on-card communication
peripherals and C-Motion Engines.

• The PRP addressing scheme allows general networking, for example, it allows PRP devices to act as
network bridges.

• Allows extension to new classes of devices and device resources, and allows easy interfacing with user-
written C-Motion Engine programs.

1.2 Scope

This manual documents the software interfaces and binary protocols used for control of all PRP-based devices, includ-
ing Prodigy/CME and ION/CME, as well as all PMD Ethernet devices. Collectively these will be called “PRP devices”.

The procedures and data types documented here are used both for programs running on host computers, and user pro-
grams running in the C-Motion Engine.

Software libraries in source form are provided to implement PRP communication on Windows® host computers. Li-
brary code is also provided for control of Magellan Motion Processors, either as part of a PRP device or separately, for
example non-CME ION modules or non-CME Prodigy cards. This library code is called C-Motion, and its use is doc-
umented in the Magellan Motion Processor Programmer's Command Reference. In many cases there is a close correspondence
between the C language library procedures and PRP messages that may make the PRP documentation useful for under-
standing how to control PRP devices, even for PRP device users who are not implementing a PRP interface library.
PMD Resource Access Protocol Programmer’s Reference 7

Introduction1
This page intentionally left blank.
8 PMD Resource Access Protocol Programmer’s Reference

2

2.PMD Resource Access
Protocol (PRP) Tutorial
In This Chapter
Resource Addressing
Accessing the Communications Ports
Accessing On-Card Resources
Accessing Magellan-Attached Devices
PRP Communication Formats

2.1 Resource Addressing

Host access to any of the Prodigy/CME cards or Ethernet-capable ION digital drives is provided by a protocol called
the PMD Resource Access Protocol (PRP). This easy-to-use yet powerful system utilizes actions, resources, and
addresses to access any of the functions of the card or digital drive. PRP is used for host communications using serial,
CANbus, or Ethernet.

Various PRP device functions are organized into resources; resource process actions sent to them. Actions can send
information, request information, or command specific events to occur. Addresses allow access to a specific resource on
the card, or connected to the card, via the PC/104 bus, serial, CANbus, or Ethernet connections.

A basic communication to a PRP device consists of a 16-bit PRP header, and an optional message body. The message
body contains data associated with the specified PRP action; some actions do not require a message body. After a PRP
communication is sent to a device, a return communication is sent by the PRP device which consists of a PRP header
and an optional return message body. The return message body may contain information associated with the requested
PRP action, or it may contain error information if there was a problem processing the requested action.

There are five different resource types supported by PRP devices. The Device resource indicates functionality that is
addressed to the entire card or digital drive, the MotionProcessor resource indicates a Magellan Motion Processor, the
CMotionEngine resource indicates the C-Motion Engine, the Memory resource indicates the dual-ported RAM or the
non-volatile RAM (Random Access Memory), and the Peripheral resource indicates a communications connection.

There are ten different PRP actions including Command, which is used to send commands to resources such as the
Magellan Motion Processor, Send and Receive, which are used to communicate using the serial, CANbus, and Ethernet
ports, Read and Write, which are used to access memory-type devices such as the on-card dual-ported RAM, and the
non-volatile RAM, and Set and Get, which are used to load or read parameters.

The remainder of this chapter, and Chapter 3, PRP Reference describe all of these constructs in more detail. More
specific information on using the functions of a particular device is available in the ION Digital Drive User's Manual, the
Prodigy/CME PC/104 User's Guide, the Prodigy/CME PCI User's Guide and the Prodigy/CME Stand-Alone Card User's Guide.
PMD Resource Access Protocol Programmer’s Reference 9

PMD Resource Access Protocol (PRP) Tutorial2
2.1.1 PMD Resource Access Protocol (PRP)

The core of the PMD Resource Access Protocol is a header that accompanies all PRP communications. Figure 2-1
shows the format of the resource access protocol header. The PRP header is a single 16-bit word divided into five
fields. Normally, the PRP header is immediately followed by a message body, but there are certain communications
that do not require a message body. PRP headers are used in both the outgoing, and the response packet. The returned
PRP header is 1 byte in length, consisting of the version field, the status code field, and 4 reserved bits.

The majority of communications to/from the host controller and the PRP device use the PRP header. Exceptions are
‘low-level’ communications sent or received directly from the Serial, CANbus, or Ethernet ports. See Section 2.2,
Accessing the Communications Ports, for more information.

PRP header field descriptions:

Version - This two bit field encodes the version of PRP being used. The value of this field for all PRP devices should
always be 1 (binary 01) unless documentation included with your PRP device indicates otherwise.

Status code - For PRP commands being sent out, this 2-bit field should contain the value 2. When received, a return
value of 0 indicates that this message is a normal response to an outgoing PRP command, a return value of 1 indicates
that an error occurred during PRP command processing, and a value of 3 indicates that this is an asynchronous event
message originated by the PRP device or by a device attached to the card. Each of these different response status codes
may have information loaded in the PRP message body. See the PMD Resource Access Protocol Programmer’s Reference for
more information.

Action - This 4-bit field contains an action identifier that is used to process PRP messages. See Section 2.1.3, PRP
Actions, for a summary of the PRP actions supported by the PRP device. This field is not used in the return PRP
header.

Resource - This 3-bit field encodes the specific resource being addressed. See the table in Section 2.1.2, PRP
Resources, for the complete resource map of the PRP device. This field is not used in the return PRP header.

Address - This 5-bit field encodes the address of the particular resource being communicated to. Fixed addresses are
used for resources that are local to the PRP device. See the table in Section 2.1.2, PRP Resources, for a resource map
of these addresses. Automatically assigned addresses are used to access attached devices, and are also used to create
peripheral connections, which are communication ‘conversations’ between the PRP device and another device. This
field is not used in the return PRP header.

The following sections provide general information on the PRP system. For a detailed description of the PRP header,
resources, and supported actions, see Chapter 3, PRP Reference.

Version Status code Action Resource Address

2 bits 2 bits 4 bits 3 bits 5 bits

Return PRP Header
Version Status code Reserved

2 bits 2 bits 4 bits

Figure 2-1:
Outgoing and
Returning PRP
header formats
10 PMD Resource Access Protocol Programmer’s Reference

PMD Resource Access Protocol (PRP) Tutorial 2
2.1.2 PRP Resources

PRP devices may support five different resource types, each of which is identified by a specific resource ID. In addition
each available resource has an address. The following table summarizes these resource IDs and addresses for the on-
card PRP device resources:

2.1.3 PRP Actions

The PRP device supports ten different actions, each of which is identified by a specific Action ID. In addition, many
actions have sub-actions associated with them that are loaded into the PRP message body. For more information on
actions, sub-actions, and the exact format by which the message body should be loaded, see Chapter 3, PRP Reference.
The following table summarizes the action IDs for the PRP devices:

2.2 Accessing the Communications
Ports

Every PRP device uses a high-speed bus for internal communication. This bus interconnects resources within the
device, such as the Magellan Motion Processor, the C-Motion Engine, and the Dual-ported RAM. External
communications use this same bus to access communication ports such as serial, CANbus, or Ethernet. This means
that commands to device resources may originate from outside the device via the serial, CANbus, or Ethernet ports,
or internally via the C-Motion Engine.

Resource
Name

Resource
ID Address Comments

Device 0 0 The Device resource indicates the PRP device itself.
CMotionEngine 1 0 The CMotionEngine resource indicates a C-Motion Engine.
MotionProcessor 2 0 The MotionProcessor resource indicates a Magellan Motion Pro-

cessor.
Memory 3 0 The Memory resource indicates a dual-ported random access

memory (RAM) or non-volatile RAM (NVRAM).
Peripheral 4 0 The Peripheral resource indicates a communications connection.

A peripheral address of 0 indicates a ‘null’ peripheral. See Section
2.2.1, Peripheral Connections, for more information.

Name Action ID
Used by
Resource Comments

NOP 0 All The No Operation (NOP) command is used to verify connec-
tion to a given resource.

Reset 1 Device, MotionProcessor Resets the specified resource.
Command 2 MotionProcessor,

CMotionEngine
Sends a command to the specified resource.

Open 3 Peripheral, Device Creates a new addressable resource. Resource addresses cre-
ated using the Open action are not fixed, they are assigned
automatically at the time a connection is requested.

Close 4 Peripheral, Device,
MotionProcessor

Closes a resource created by Open, freeing the automatically
assigned address. Used when a resource is no longer needed.

Send 5 Peripheral, C-Motion
Engine

Sends a message to the specified resource.

Receive 6 Peripheral, C-Motion
Engine

Receives a message from the specified resource

Write 7 Memory Writes a data word to a memory resource
Read 8 Memory Reads a data word from a memory resource
Set 9 Device, CMotionEngine Sets parameters for a specified resource
Get 10 Device, CMotionEngine Get parameters for a specified resource
PMD Resource Access Protocol Programmer’s Reference 11

PMD Resource Access Protocol (PRP) Tutorial2
A powerful feature of the PRP device’s communication bus is that it can process multiple communication requests
simultaneously. For example the C-Motion Engine can be used to send motion commands to the on-card Magellan
Motion Processor, while an external host controller can communicate to the same Magellan via the Ethernet port to
monitor progress of the moves, and display results on a remote capture/analysis program, such as PMD’s Pro-Motion

software.

2.2.1 Peripheral Connections

PRP supports four different programmable network connection types, PC/104 bus, Serial, CANbus, and Ethernet.
Every PRP device provides one or more of these interfaces. These communication resources are represented in PRP
by a construct called a peripheral connection. A peripheral is a resource (resource ID: 4), and is provided, or utilized,
by various PRP actions to send and receive messages to network connections.

Obtaining access to either the PC/104 bus, serial, CANbus, or Ethernet port is accomplished via the PRP Open action.
This action opens a peripheral by specifying a sub-action of OpenISA, OpenSerial, OpenCAN, OpenTCP or OpenUDP,
as well as the detailed connection parameters that will be used during communications with that specific peripheral
connection. Each newly opened peripheral connection receives an automatically assigned address. The application
code that requests the new peripheral connection must record that provided address for future use, and it is this
address that is used within the PRP message to reference the newly created peripheral connection.

To send a message to the new peripheral connection, a timeout parameter and the desired message is loaded into the
PRP message body and the Send action is specified. To retrieve messages from that peripheral connection the Receive
action is used. The Receive action requires that an amount of time (the communication timeout) be loaded into the
message body. If a message is not received in the specified amount of time an error is returned.

While it is allowed to have more than one communications channel send motion commands to the PRP device’s
Magellan Motion Processor and another channel send monitoring-related requests, it is not advisable to have mul-
tiple communication channels send motion commands to the Magellan at the same time. This may result in unex-
pected or unsafe motion.

Automatically assigned addresses generally increment by one each time they are assigned, however this should
not be assumed. The exact return address value should be stored and only that value should be used to reference
that specific peripheral. Each Peripheral Open action is specific to the type of connection being requested. For
example there is an ‘open peripheral’ command for CANbus communications, one for Serial communications, and
so on.
12 PMD Resource Access Protocol Programmer’s Reference

PMD Resource Access Protocol (PRP) Tutorial 2
Example

Figure 2-2 shows a network configuration. The host controller needs to initiate, send and receive a message to/from
a specific device connected on the CANbus port.

This sequence will be accomplished in three steps. PRP messages will be assembled that comprise the Open action,
and then in turn the Send and Receive actions. As for all PRP messages, the resource ID, the address, and the Action
ID must be specified. In this example, to start the sequence the Resource is a 4 specifying a Peripheral, the Action ID
for Open is 2, and the PRP address will be loaded with a 0. The message body is loaded with a code for the sub-action
OpenCAN as well as the detailed CANbus communications parameters to establish the connection, such as baud rate,
send address, and receive address. For the exact message body of this and all PRP actions, refer to Chapter 3, PRP
Reference.

To simplify the nomenclature for PRP messages, a shorthand will be used which contains the mnemonic ‘PRP,’ the
Resource ID, the string ‘Addr,’ the resource address, and the PRP action. Any additional information pertaining
to the error code or message body will be contained in the comment for the message.

NewPeriphID = PRP Device, Addr 0, Open // Send a request to open a connection to the device being
// addressed via the CANbus port.
// The Message body contains the detailed CANbus parameters
// for that connection.
// The Address of the new Peripheral connection is contained in
// the body of the return message.

PRP Peripheral, Addr NewPeriphID, Send // Send a message, contained in the message body, to the CAN
// bus connection created using the Open command. Note that
// the Peripheral address provided in the previous command is
// used to identify which Peripheral connection the message
// should be sent to.

PRP Peripheral, Addr NewPeriphID, Receive // Receive a message. The string will be contained in the message
// body of the return message from the CANbus Peripheral
// connection.

Ethernet/TCP
C-Motion
Engine Magellan

Prodigy/CME
PC/104 Card

Host Controller

CANbus
device

CANbus
device

CANbus

Figure 2-2:
Example
Network
Configuration
PMD Resource Access Protocol Programmer’s Reference 13

PMD Resource Access Protocol (PRP) Tutorial2
Sending a message to the Peripheral resource at address 0 has special meaning as the ‘null’ peripheral. This peripheral
address indicates ‘no peripheral,’ and may be useful in certain situations for disabling console messages, or disabling
the Magellan’s event output mechanism.

2.2.2 Managing Automatically Assigned Addresses

Although most network configurations are created once and left in place while the machine is operating, there may be
circumstances where peripheral connections are made, and are then no longer needed. If this is the case, these
connections should be ‘closed,’ thereby freeing that automatically assigned Peripheral address. This is accomplished
via the PRP action Close.

Figure 2-3 shows a PRP device being used as a production Ethernet device exerciser.

In this example the ION/CME module sends messages to two different Ethernet/TCP addresses and then closes
those peripheral connections to allow the process to be repeated indefinitely.

For complete information on the format and function of these, and other PRP commands, refer to Chapter 3, PRP
Reference,.

PeriphID1 = PRP Device, Addr 0, Open // Open a peripheral connection to Ethernet device 1
PRP Peripheral, Addr PeriphID1, Send // Send a test string to Ethernet device 1
PeriphID2 = PRP Device, Addr 0, Open // Open a peripheral connection to Ethernet device 2
PRP Peripheral, Addr PeriphID2, Send // Send a test string to Ethernet device 2
PRP Peripheral, PeriphID2, Close // Close peripheral connection for Ethernet device 2
PRP Peripheral, PeriphID1, Close // Close peripheral connection for Ethernet device 1

Figure 2-3:
Example PRP
Device
Architecture
with Ethernet
Device Testers
14 PMD Resource Access Protocol Programmer’s Reference

PMD Resource Access Protocol (PRP) Tutorial
 2

2.3 Accessing On-Card Resources

The most common use of any PRP device is to process commands to resources located on the device itself. Typically
this means communicating with the on-card Magellan Motion Processor, but it can also mean communicating with
other device resources such as the dual ported RAM. Figure 2-4 shows this configuration.

Accessing on-card resources is straightforward using the PRP system. The on-card resource and the address are looked
up using the table in Section 2.1.2, PRP Resources, and then a PRP message corresponding to the desired action is
sent using those on-card resource and address values. The following example illustrates:

Example 1: A Host Controller wants to set the position of Axis 3 of the PRP device’s on-card Magellan Motion
Processor to a value of 0x123456.

From the table in Section 2.1.2, PRP Resources, to communicate with the on-card Magellan Motion Processor, a PRP
message is sent to Resource ID 2 (corresponding to the MotionProcessor resource), to address 0 (corresponding to
the PRP device’s on-card Magellan), with an action ID of 2 (corresponding to the Command action). The message body
is loaded with the Magellan packet corresponding to “Set Position, #3 0x123456,” which is the 3-word sequence
0x210, 0x0012, 0x3456.

Upon processing of this command, the host would receive a PRP message back. A zero in the status field would indi-

cate that no error occurred. If this is the case the message body will be empty. If an error did occur, then the PRP sta-

tus field would contain a 1, and the message body would contain the specific error code that occurred.

Example 2: The Host Controller reads the 32-bit word value of address 0x100 from the PRP device’s dual ported RAM

Here is the command that would be sent:

Upon successfully processing this command, the host would receive the 32-bit contents of memory location 0x100 in
the message body.

Note that the PRP message to send a Magellan command packet did not use a sub-action code in the message body,
while the Read command sent to the dual ported RAM did. Whether or not a sub-action is required, and what the
codes are for various sub-actions, is action-specific, and sometimes resource-specific. Chapter 3, PRP Reference
provides exact message body information for each PRP action and (if applicable) sub-action.

Note also that in this discussion of sending PRP messages to the PRP device, the specific communications channel to
the card (serial, CANbus, Ethernet) was not discussed. That is because the PRP header and message body are the same

PRP MotionProcessor, Addr 0, Command // Send a command to the on-card Magellan Motion Processor. Message
// body contains Magellan Command “SetPosition #3, 0x123456”

PRP Memory, Addr 0, Read // Send a ‘Read’ action (ID: 7) to the PRP Memory Resource (ID: 3),
// address 0 (the address of the PRP device on-card dual
// ported RAM). The PRP message body contains a sub-action of 0,
// specifying a 32 bit word read, followed by 0x100 the address of the
// 32 bit word to read from the dual ported RAM.

Figure 2-4:
Host Controller
& On-card
Resources
PMD Resource Access Protocol Programmer’s Reference 15

PMD Resource Access Protocol (PRP) Tutorial2
regardless of how transmission occurs. Depending on the network type used, those varying communication links will
send, receive, and process errors for packet communications in different ways, but from the perspective of the PRP
system, those message transmission details are handled automatically. This is a very powerful characteristic of the PRP
system, and we will see additional examples of similar ‘access virtualization’ as we discuss more advanced network
topologies.

2.4 Accessing Magellan-Attached
Devices

Section 2.2.1, Peripheral Connections, provided information on how general purpose messages can be sent to, or
received from, any of the PRP device’s network ports. This level of low-level access can be useful to communicate with
a wide variety of custom-created or off-the-shelf products that are capable of communicating on that bus.

If the attached device is a PMD device however, such as a non-/CME ION or non-/CME Prodigy PCI card
(PR825xx20 family and PR925xx20 family) then it is possible to integrate these devices into the PRP access network
so that they can be communicated to without using low-level peripheral send and receive commands.

Figure 2-5 provides an example of a setup where a Prodigy/CME PC/104 card is connected via Ethernet to a host
controller, and where a second non-CME Prodigy PC/104 card is attached to the PC/104 bus.

To actually send a PRP command over a serial, CANbus, or Ethernet network, specific protocols must be ob-
served. See Section 2.5, PRP Communication Formats, for this network-specific (serial, CANbus, or Ethernet) in-
formation.

IONs and non-/CME Prodigy PCI cards are referred to as ‘Magellan-Attached’ devices because the network di-
rectly connects to the Magellan Motion Processor, and utilizes the Magellan’s own communication protocols for
receiving commands and returning data along the communication link.
16 PMD Resource Access Protocol Programmer’s Reference

PMD Resource Access Protocol (PRP) Tutorial 2
In this ‘bridge’ configuration, the host controller (or the PRP device’s C-Motion Engine) can access the PC/104-
connected Prodigy card very similarly to the way in which the on-card Magellan is addressed. To accomplish this
however, a different method is used to create access to the Magellan compared to the method described for on-card
Magellan access in (see Section 2.3, Accessing On-Card Resources, for details).

Rather than sending PRP messages to the on-card MotionProcessor resource, first a raw peripheral connection is
opened, and then the Open action with a sub-action of MotionProcessor is used to open a new MotionProcessor
resource. The following PRP code sequence illustrates:

Note that as the command sequence above shows, after the new MotionProcessor resource addresses are created using
the Open action, subsequent Magellan commands to the slave Prodigy-PC/104 are identical in format to commands
to the on-card Magellan. This illustrates a very powerful feature of the PRP system which is that it allows resources to
be addressed transparently by the host controller (or C-Motion Engine module), making it easy to create and access
networks of PMD products.

Note also that the Open action can be used with different resource types. In Section 2.2.1, Peripheral Connections, it
was used with a resource type of Device to open a peripheral connection. In the above example it was used with a
resource type of Peripheral to open a connection to a Magellan Motion Processor.

NewPeriphID = PRP Device, Addr 0, Open // Open an ISA peripheral connection to connect to the slave
// Prodigy-PC/104 card

NewMtnProcID = PRP Peripheral, Addr NewPeriphID, Open
// Use the opened peripheral connection to create a new
// MotionProcessor resource using the Open action with
// sub-action specifying MotionProcessor. A new MotionProcessor
// resource address is loaded into the message body

PRP MotionProcessor, Addr NewMtnProcID, Command
// Send Magellan command packet to the slave Prodigy-PC/104’s
// Magellan Motion
// Processor using the standard method of communicating with
// MotionProcessor resources

Ethernet/TCP
C-Motion
Engine Magellan

Prodigy/CME
PC/104 Card

Host Controller

PC/104 Bus

Prodigy
Card

Figure 2-5:
Host Controller
& Magellan-
attached
Devices
PMD Resource Access Protocol Programmer’s Reference 17

PMD Resource Access Protocol (PRP) Tutorial2
2.5 PRP Communication Formats

The following sections discuss how PRP messages should be formatted on the Serial, CANbus, and Ethernet
networks so that they can be properly interpreted by the PRP device. Note that PRP messages from a host are not
sent over the PC/104 bus, because the only PC/104 PRP device, the Prodigy/CME PC/104 card, acts as the bus
master. Communication via PRP from a host to the PRP device occurs via serial, CANbus, or Ethernet.

2.5.1 PRP Messages Over Serial

PRP devices can receive PRP command messages from a host controller on one or more serial ports. This section
describes the format of these packets, which transfer PRP messages over a serial protocol.

Figure 2-6 shows the Serial packet protocol that must be used for all PRP messages. This serial header is 32 bits, and
is broken into three fields as follows:

Address: the first byte is an address field, used only with RS485 communications. For RS232 communications, this
byte is not included in the packet.

Checksum: The second byte is a simple 8-bit additive checksum of all bytes in the packet payload (excluding the serial
header, i.e., the address, checksum, and length fields). From Figure 2-6 this means only the PRP header and message
body contribute to this checksum value

Length: The third byte is an 8 bit length field. The length indicates the number of bytes in the packet payload. The
packet payload is defined as everything in the serial packet after the length field. That is, the 2 byte PRP header plus
however many bytes are contained in the PRP message body. For example if the PRP message body is 6 bytes in size,
the value filled into the length field should be 8 (2 bytes for PRP header + 6 bytes for the PRP message body).

Figure 2-6:
PRP Message
over Serial
Format

Return PRP messages should be formatted in the same way.

2.5.1.1 Serial Packet Processing

An error-free Serial/PRP communication sequence from the host controller to the PRP device consists of a full
outgoing packet transmission with the correct checksum and specified number of bytes received by the PRP device,
and a full packet response with correct checksum and length received at the host controller. The return message must
be received within a fixed amount of time determined by the host controller. Correctly setting this ‘timeout window’
may depend on factors such as baud rate, but 100 msec is a typical safe value.

If the host controller receives a response packet with an incorrect checksum, or does not receive the complete
response (communications timeout), then the original message should be resent.

If the PRP device receives a packet with an incorrect checksum, then a packet with an error code indicating this is
returned to the host controller.

If the PRP device does not receive the specified number of bytes within 100 msec (the PRP device timeout value) of
beginning of packet reception, the incoming message is ignored, and no message is sent to the host controller.

Address Checksum Length PRP Message
(RS485 only)
18 PMD Resource Access Protocol Programmer’s Reference

PMD Resource Access Protocol (PRP) Tutorial 2
2.5.2 PRP Messages Over CANbus

If the PRP device is set up to process PRP command messages from a host controller over CANbus, a specific format
for the packets must be followed. This section describes the format of how PRP messages are carried over CANbus.

Since native CANbus communications can not be larger than 8 bytes, hosting the PRP system, which can support
shorter as well as longer messages, requires additional layers to manage data segmentation and desegmentation. The
protocol that is used by the PRP devices to accomplish this is very similar to the Service Data Object (SDO) protocol
of the CANopen standard.

The details of this protocol are extensive enough that they are not described here, but are available in the Chapter 3,
PRP Reference.

2.5.2.1 CANbus Packet Processing

Unlike the serial protocols, the SDO-based CANbus protocol has a robust error checking and retransmission mech-
anism built in that corrects for garbled or otherwise unusable transmissions.

Nevertheless, if a host controller does not receive the complete response packet within a specific time window (com-
munications timeout), then the original message should be resent.

2.5.3 PRP Messages over Ethernet

The existence of ports, and the broad range of packet lengths that are supported with the Ethernet TCP/IP protocol,
makes sending PRP messages very simple. For both sent and received messages the PRP message is simply loaded as
the ‘payload’ of the Ethernet message. The only convention that must be observed is that the host controller’s
destination TCP port must be equal to the PRP device’s TCP default value set using the SetDefault command. Note
that the UDP protocol may not be used for PRP communications to/from the PRP device.

2.5.3.1 Ethernet Packet Processing

Unlike the serial protocols, Ethernet TCP packets have a robust error checking and retransmission mechanism built
in that corrects for garbled or otherwise unusable transmissions.
PMD Resource Access Protocol Programmer’s Reference 19

PMD Resource Access Protocol (PRP) Tutorial2
This page intentionally left blank.
20 PMD Resource Access Protocol Programmer’s Reference

3

3.PRP Reference
In This Chapter
The PMD Resource access Protocol (PRP) is used for sending commands to, and receiving status information from, a
PRP device, such as an ION/CME module or Prodigy/CME card. The protocol may be transported using a serial line
(RS232/485), Ethernet TCP/IP, CANbus, or PCI bus. The central idea of the PRP is that of commanding an action to
a specific resource identified by an address, on a PRP device. The table in Section 3.4.1, Outgoing PRP Packet illustrates
how these data are encoded in an outgoing packet.

In addition to commands made directly to a PRP device, PRP may be used to send commands to Magellan Motion
Processors, for example non-CME ION modules and non-CME Prodigy cards, that are accessible through a Prodigy/
CME card. These will be called “Magellan attached” devices. Finally, PRP may be used to route commands to a PRP device
via another PRP device.

3.1 PRP Resources

A PRP resource is a category of object to which commands may be sent. Objects are grouped together whenever they
may be used in the same fashion, for example all connections to remote devices over any sort of communication channel
are grouped together as peripheral resources. Resources may be local, that is provided by a PRP device that is directly
accessible from a host program, or remote, that is accessible only through another PRP device. Local resources have fixed
addresses beginning with zero, while remote resources have addresses that are assigned by a PRP request to a Prodigy/
CME device.

The following table summarizes the various resource types and their numeric codes.

Device means a Prodigy/CME board, ION/CME module or a future device that understands the same protocol.

CMotionEngine means the C-Motion engine of a device, a functional unit capable of running user-specified C-Motion
programs.

MotionProcessor means a Magellan Motion Processor, which may be part of a Prodigy/CME card, a non-CME Prodigy
card, an ION/CME module, a non-CME ION module or a user-designed device including a Magellan Motion
Processor.

Memory means a memory unit capable of being randomly addressed. The dual-ported RAM available on Prodigy/CME
boards is a memory.

Name Code Description
Device 0 A Prodigy/CME card or ION/CME module
CMotionEngine 1 A C-Motion Engine
MotionProcessor 2 A Magellan Motion Processor
Memory 3 A random access memory
Peripheral 4 A connection to a remote device over a communications channel.
Reserved 5-7
PMD Resource Access Protocol Programmer’s Reference 21

PRP Reference3
Peripheral means an open connection to some off-card object using a communications device. This resource type
applies to connections made using TCP, UDP, CANbus, serial, or PC-104 ISA bus, as well as any similar transport
mechanisms that may be supported in the future. The address zero is reserved for the null peripheral. Data sent to the
null peripheral will be discarded without error, reading from the null peripheral will never produce any data, and will
eventually time out.

3.2 PRP Addresses

Every resource accessible using PRP is identified by a numeric address. Addresses for resources local to a PRP device
are fixed numbers beginning with zero, addresses for resources on remote PRP devices, that is devices not directly
connected to the host, are obtained by PRP actions and are dynamically assigned.

While these remote addresses may in practice be predictable, it is important not to assume their values, which may
change depending on the state of the device assigning them. Remote addresses are specific to the PRP device that
assigned them, they represent the beginning of a path to the remote resource, not a global network address for it.

Although PRP supports general remote addressing, it is useful even when restricted to local addresses, and it is likely
that many applications will use only local addressing.

3.3 PRP Actions and Sub-Actions

A PRP action is a particular operation, specified by a 4 bit integer. “Pocked” or “command” would have been
reasonable names instead of “action.” All the different variants of a given action are logically similar.

The behavior of an action depends on the resource type to which it is addressed, the same action may take a different
set of arguments, return different data, and have different effects depending on its resource type. Many, but not all,
actions are only fully specified by adding a sub-action, an 8-bit code qualifying the action to take. Finally, a few
commands also accept a sub-sub-action, another 8-bit qualifier of the action to take.

An action is fully specified by the action, the resource, and the sub-action. In the detailed PRP action reference section
the action appears on the left side of the heading, the resource in the middle, and the sub-action on the right.

The following table summarizes the action codes. See Section 3.6, PRP Action Reference for more information.

Name Value Meaning Resources
NOP 0 No operation All
Reset 1 Perform a reset Device, MotionProcessor
Command 2 Motion Processor and miscellaneous actions MotionProcessor
Open 3 Open an addressable resource Peripheral, Device
Close 4 Close a remote resource any remote resource
Send 5 Send data to a stream-like resource Peripheral, CMotionEngine
Receive 6 Receive data from a stream-like resource Peripheral, CMotionEngine
Write 7 Write data to an indexed resource Memory, Peripheral (ISA)
Read 8 Read data from an indexed resource Memory, Peripheral (ISA)
Set 9 Change a setting or operating state Device, CMotionEngine
Get 10 Get a setting or operating state Device, CMotionEngine
Reserved 11-15
22 PMD Resource Access Protocol Programmer’s Reference

PRP Reference 3
3.4 PRP Packet Structure

Every PRP command is sent as a data packet, and how the packet is structured depends on the transport mechanism
used. In every case however, the receiver of the packet can determine its length. For serial and CANbus ports a PMD
protocol is used to encode the length. For other transport mechanisms standard means are used to determine length.
Every command packet begins with a two byte (16 bit) header, followed by a message body, the length of the message
body depends on the particular action, some actions do not require a body, some a fixed length body, and some a
variable length body.

There are four PRP packet types, each of which has a unique value of the status field in the PRP header:

• Status 2: Outgoing (command) packets are used to request information or command a PRP device to do
something.

• Status 0: A success response packet is returned after an outgoing packet that may be complied with. The
response packet may include one or more data bytes depending on the particular action that was
requested.

• Status 1: A failure response packet is returned after an outgoing packet that may not be complied with.
A 16 bit error code is included to indicate the nature of the problem.

• Status 3: An asynchronous event packet is sent from a PRP device to a host in response to a Magellan
motion processor event that has been selected using the Magellan SetInterruptMask command,
documented in the “Host Interrupts” section of the Magellan Motion Processor User’s Guide. Event
notifications from Prodigy/CME Magellan Motion Processors or from Magellan-attached devices may
be propagated back to a host computer if all of the peripheral connections were opened with appropriate
settings for handling events.

3.4.1 Outgoing PRP Packet

The table below shows the structure of an outgoing PRP packet:

The action, resource, and address fields are explained in the previous sections.

Shading is used for the version and status fields to indicate that their values are fixed. The version field is used for sanity
checking and possible future protocol changes, for all current PRP devices the version field must contain 1. The status
field is used in the response packet to indicate success or failure, and to distinguish outgoing from incoming packets.
For all outgoing headers the status field must contain 2.

3.4.2 PRP Response Packets

A PRP device must respond with a response packet, which has at least a one byte (8 bit) header, followed by a message
body. The length of the message body depends on the particular action - in some cases no body is required, in some
cases a fixed length body is required, and in some cases a variable length body is used. In the case of a variable length
body, information on packet length external to PRP must be used to determine the length.

Outgoing PRP Packet
header byte 0 version (1) status (2) action

7 6 5 4 3 2 1 0

header byte 1 resource address
7 6 5 4 3 2 1 0

body byte 0…
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference 23

PRP Reference3
The table below shows the structure of PRP response packets for success and for failure:

The version field, as for the outgoing packet, must contain 1.

The bits marked reserved may have any value, may be unpredictable, and should be ignored.

The status field is used to indicate success or failure, a value of zero indicates success, and a message body may follow
as specified by the documentation for the particular action to which the PRP device is responding. A status value of 1
indicates that an error occurred processing the requested action, and a two byte (16 bit) message body follows
specifying the particular error that occurred. The table below summarizes the values that the error code may take.
When used in the C language interface these names should be prefixed by “PMD_ERR_RP_,” for example,
“PMD_ERR_RP_InvalidAddress.”

3.4.3 Event Notification Packet

Asynchronous events may be signaled by a Magellan Motion Processor, either a Magellan attached device, such as an
ION module, or a motion processor that is part of a PRP device. News of asynchronous events is propagated as
promptly as possible to all devices with an open connection to the motion processor signaling them, so that user
programs may check for them using the PMDWaitForEvent procedure without the network latency required for a
Magellan command read of the event status register.

Asynchronous event notification is optional. In order for the event mechanism to work an appropriate event channel
must be specified when opening each peripheral used for motion processor or PRP device communication. The event
mechanism is supported by TCP/IP (see the OpenTCP action), PCI (see the PMDPeriphOpenPCI 7 procedure), PC-

 PRP Success Response Packet
header byte 0 version (1) status (0) reserved

7 6 5 4 3 2 1 0

body byte 0…
7 6 5 4 3 2 1 0

PRP Failure Response Packet
header byte 0 version (1) status (1) reserved

7 6 5 4 3 2 1 0

error byte 0
7 6 5 4 3 2 1 0

error byte 1
7 6 5 4 3 2 1 0

Name Value Description
Reset 0x2001 The previous command reset the device; action was not pro-

cessed.
InvalidVersion 0x2002 The version field was incorrect.
InvalidResource 0x2003 No such resource type.
InvalidAddress 0x2004 The address for the specified resource type is not valid.
InvalidAction 0x2005 No such action, or resource not appropriate to specified action.
InvalidSubAction 0x2006 Sub-Action field not valid, or resource not appropriate for sub-

action.
InvalidCommand 0x2007 An enumerated option argument is not correct.
InvalidParameter 0x2008 An argument value is not legal, or not supplied.
InvalidPacket 0x2009 A PRP packet was corrupted
Reserved 0x200A-0x200D
Checksum 0x200E Bad packet checksum value
Reserved 0x200F-0xFFFF
Magellan error codes 1 – 18 Magellan Motion Processor error codes, documented in the Magel-

lan Motion Processor User’s Guide.
24 PMD Resource Access Protocol Programmer’s Reference

PRP Reference 3
104 (see the OpenISA action), and CANBus (see the OpenCAN action). Serial peripherals do not support event no-
tification.

The table below indicates the structure of an asynchronous event notification packet:

An asynchronous event notification may be sent by a PRP device to a host at any time, so software to deal with PRP
connections must be prepared to handle either an event notification packet or a response packet. The details of event
packet transmission depend on the transport mechanism. Over TCP/IP connections event packets are sent to the
same port and in the same way as response packets. Serial connections do not support event notification. PCI bus PRP
connections use an interrupt and a separate memory buffer for event notification. For details on a specific transport
mechanism see Section 3.5, PRP Transport Layers.

The version field, as for other packet types, must contain 1. The status field value of 3 identifies the packet type as

event notification.

The eventType field identifies the sort of event signaled, currently only one type is supported, 2, meaning a Magellan
Motion Processor event notification. All other values through 15 are reserved for future expansion, and it is expected
that some will be used for PRP/CME-specific events.

The resource and address fields identify the specific resource that was responsible for signaling an event. In the case
of a motion processor event, resource will be MotionProcessor (2). In the most common case of an event raised by
a PRP device motion processor address will be zero, however for the case of a PRP device controlling a Magellan
attached device, address will be the value assigned during the Open Device OpenMotionProcessor action.

The number and meaning of the body bytes will depend in general on the event type, but because only one event type
is supported at this time its body layout is illustrated.

Axis indicates the motion processor axis signaling the event, zero meaning axis 1, one axis 2, and so forth.

EventStatus is the value of the 16-bit event status register at the time the event was signaled. The “Host Interrupts”
section of Magellan Motion Processor User?s Guide documents the meaning of the bits of this register.

3.5 PRP Transport Layers

This section discusses the communication device-specific aspects of sending and receiving PRP packets.

PRP may be sent using a serial, PCI, CANbus, or TCP/IP communication channel. PRP is not currently supported
over PC/104 because the only PC/104 PRP device, Prodigy/CME, may only be a PC/104 bus master.

Event Notification PRP Packet
header byte 0 version (1) status (3) eventType

7 6 5 4 3 2 1 0

header byte 1 resource address
7 6 5 4 3 2 1 0

body byte 0 Axis
7 6 5 4 3 2 1 0

body byte 1 EventStatus byte 0
7 6 5 4 3 2 1 0

body byte 2 EventStatus byte 1
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference 25

PRP Reference3
3.5.1 PRP Serial Transport

A PMD protocol header is used to specify the length of PRP packets sent over a serial line, and to detect most cases
of packet corruption. The Prodigy/CME card and ION/CME module are set up to receive serial PRP command
messages from a host controller on Serial port 1.

There are two cases of the serial protocol:

1 Point-to-point serial communication using either RS232 or RS485: only one PRP device and one host
may be connected to the serial line.

2 Multi-drop serial communication using RS485: multiple PRP devices may share the same serial bus, but
each must be configured to use a separate multi-drop address.

The figures below illustrate the two cases:

The MultiDropAddress field is used to address a particular PMD serial device, and each device must be configured to
use a different address.

The length field is the unsigned number of bytes in the PRP packet, put another way, for point-to-point packets there
are length + 2 bytes in a serial packet, and for multi-drop packets there are length + 3.

The checksum field is a simple additive checksum modulo 256, over the bytes in the PRP packet, exclusive of the serial
header. A checksum over all bytes in the serial packet excluding the MultiDropAddress and length bytes should be
zero.

Both outgoing and response packets are formatted in the same way. Asynchronous event notification is not supported
using serial transport.

An error-free Serial/PRP communication sequence from the host controller to the PRP device consists of a full
outgoing packet transmission with the correct checksum and specified number of bytes sent to the card, and a full

Point-to-Point Serial Packet

checksum
7 6 5 4 3 2 1 0

length
7 6 5 4 3 2 1 0

PRP packet byte 0
7 6 5 4 3 2 1 0

PRP packet byte 1 …
7 6 5 4 3 2 1 0

Multi-Drop Serial Packet

MultiDropAddress
7 6 5 4 3 2 1 0

checksum
7 6 5 4 3 2 1 0

length
7 6 5 4 3 2 1 0

PRP packet byte 0
7 6 5 4 3 2 1 0

PRP packet byte 1 …
7 6 5 4 3 2 1 0
26 PMD Resource Access Protocol Programmer’s Reference

PRP Reference 3
packet response with correct checksum and length received at the host controller. The return message must be
received within a fixed amount of time determined by the host controller. Correctly setting this 'timeout window' may
depend on factors such as baud rate, but 100 milliseconds is a typical safe value.

If the host controller receives a response packet with an incorrect checksum, or does not receive a complete packet
(communications timeout), then the original message should be resent.

If a PRP device receives a packet with an incorrect checksum, then it will respond with an error response packet with
an error code of PMD_ERR_RP_Checksum.

If the PRP device does not receive the specified number of bytes within 100 milliseconds of beginning of packet
reception, the incoming message is ignored, and no message is sent to the host controller.

3.5.2 PRP TCP/IP Transport

PRP packets are realized as TCP/IP packets, except that three bytes of padding must be added before each outgoing
(host to PRP device) packet. The padding bytes are ignored.

The length of each PRP packet is determined from the IP header.

In order to initiate a PRP connection, a host should establish a TCP connection to a PRP device using the port
specified by the device default DefaultTCPPort. The factory default for this port is 40100, but it may be changed using
Set Device SetDefault.

The Prodigy/CME and ION/CME module support asynchronous event notification over TCP/IP by sending event
packets to DefaultTCPPort +1. The packet format is the same as the CAN event notification packet.

PRP over TCP/IP supports asynchronous event notification by sending event packets over the same TCP connection
as response packets, so the host must be prepared to read a packet at any time, and to distinguish event from response
packets.

3.5.3 PRP PCI Bus Transport

The Prodigy/CME-PCI card uses the PCI 9030 interface chip from PLX technology. For information on the
operation of this device or on developing driver software please refer to the PLX documentation available from
www.plxtech.com.

The PCI PRP transport uses an on-card buffer mapped into PCI memory space for exchanging PRP packets. Two
base address registers (BARs) found in the PCI configuration space for the card are used, BAR 2 is used for some
control and status bits, and BAR 5 is used for reading and writing the PRP messages.

There are six base address registers in total, the actual base addresses are obtained from the host operating system or
from the PLX driver:

• BAR 0 and BAR 1 are reserved by PLX.

• BAR 2 is used for command and status registers to control the flow of PRP messages and console data,
including the registers illustrated in the table below. All registers are 16 bits wide.

• BAR 3 is used for resetting the card.

• BAR 4 is reserved.

Word 1 Event axis

Word 2 Event status
PMD Resource Access Protocol Programmer’s Reference 27

http://www.plxtech.com/

PRP Reference3
• BAR 5 contains a 2048 byte on-card buffer for exchanging PRP packets and console data, illustrated in
the table below:

In order to send a PRP message over the PCI bus the following sequence should be followed:

1 Write the length to PCI BAR 5 offset 0, and the packet data beginning at PCI BAR 5 offset 4.

2 Set bit 0 in PCI_CMD_REG (BAR 2 offset 0x10) to inform the Prodigy/CME card that a PRP message
is waiting.

3 Poll bit 0 in PCI_STATUS_REG (BAR 2 offset 0x12) until set by the card to indicate that a PRP response
is ready.

4 Clear bit 0 in PCI_STATUS_REG.

5 Read the response length from PCI BAR 5 offset 0, and the response data beginning at PCI BAR 5
offset 4.

3.5.4 PRP CANbus Transport

PRP over CANbus uses the concept of a node identifier, a concept borrowed from CANOpen. The node identifier is a
user-chosen integer between 1 and 127, inclusive, and is the least significant seven bits of any CAN identifier used for
PRP communication. As long as their node identifiers are different, PRP devices should coexist (but not
communicate) with CANOpen devices on the same CANbus.

PRP uses three CAN identifiers for communication:

• 0x600 + NodeIdentifier is used for sending messages from the host to a PRP device. This identifier is used
by default for SDO transmit by CANOpen devices.

• 0x580 + NodeIdentifier is used for sending responses from a PRP device to a host. This identifier is used
by default for SDO receive by CANOpen devices.

BAR 2 Offset Register Description
0 – 0x000F Reserved

0x10 PCI_CMD_REG (read/write) Command Register – contains the type of PCI transaction to
be initiated. A write to this register initiates a PCI transac-
tion.

Bits 15:1 – Not used
Bit 0 – set means PCI read(card to host); clear means PCI
write (host to card)

0x12 PCI_STATUS_REG
(read only)

Status Register – contains the status of the last PCI transac-
tion.

Bits 15:1 – Not used
Bit 0 – set means PCI transaction complete. This nbit is cel-
ared by a write to PCI_CMD_REG.

0x14 PCI_IRQ_OUT_ENABLE
(read/write)

Interrupt Enable Register – enables the corresponding indi-
vidual PCI local bus interrupt requests.

BAR 5 Offset PRP Message Buffer
0 - 3 PRP message length
4 - 0x3FF PRP packet data
0x400 - 0x600 Reserved
0x600 - 0x7FF Console message data
28 PMD Resource Access Protocol Programmer’s Reference

PRP Reference 3
• 0x180 + NodeIdentifier is used for sending asynchronous event notification packets from a PRP device
to a host.

CAN messages are limited to eight bytes of data, which means that many PRP packets require several CAN messages
for transport. In order to support PRP over CANbus a segment/de-segment protocol is used. The first byte of each
CAN message is used for segment information; all of the remaining bytes are used for the PRP header or body.

Each CAN message used for PRP is either an initial message, or a continued message. An initial message is the first
message used for a PRP packet, and may be the only message in the packet. An initial message may be followed by
zero or more continued messages, which complete the PRP packet.

The same protocol is used for sending PRP actions, responses, and event notification packets.

The header byte of each initial message has the form:

NContinued is the number of continued messages that will follow, and may be zero.

Each continued header byte has this form:

The first continued message has a Sequence value of one, the second two, and so forth. Each message has a Sequence
value one greater than that of the previous message. The final message has a Sequence value of NContinued.

If a message is received with an unexpected Sequence value, or an Initial message is received when expecting a
Continued message, then the receiver should immediately send a PRP error packet with the error code
CANMessageOutOfSequence [NB. value and perhaps name TBD].

The exact length of a PRP packet may not be determined after reading just the initial message with a nonzero
NContinued value, because the length of the last message is not known. The length is at least 7 * NContinued + 1 and
at most 7 * (NContinued + 1).

No PRP packet checksum is required, because the integrity of each CAN message is protected by a CRC, naturally
including the segment header bytes. Reception of the expected sequence numbers is very good evidence that a packet
has been correctly received.

3.6 PRP Action Reference

This section describes each action and sub-action, with the binary encoding of all arguments. The following tables
summarize the available actions and, where applicable, related C language procedures. The first table is arranged in
alphabetical order; the second table is arranged in action code order.

Some aspects of action processing are common to all commands:

• Many PRP actions require a sub-action in addition to the action and resource, this is an 8-bit unsigned
quantity that immediately follows the PRP outgoing header. Not all actions use a sub-action.

• The status field of a response packet is zero in case of successful command processing, and has the value
1 (Error) otherwise. In the error case the described returned data are not sent, instead a single 16 bit error
code is sent in the response body. The reserved bits of a PRP response packet header may have any value,
they are not guaranteed to be zero.

• The address field of a command header should hold a valid PRP address for the resource type sent. The
address field of the response header will have the same value.

1 NContinued
7 6 5 4 3 2 1 0

0 Sequence
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference 29

PRP Reference3
• A resource field that may have any of several values is indicated by the word resource, and the legal values
specified in the resources section.

• All multi-byte argument values are encoded in little endian order: The least significant byte is sent first,
and the most significant last. A 32 bit quantity is sent as bytes 0, 1, 2, and then 3, the most significant byte.

• Signed arguments are sent as twos-complement integers.
30 PMD Resource Access Protocol Programmer’s Reference

PRP Reference 3
3.6.1 Action Table - Code Order

Action Resource Sub-action C Procedure
NOP any

Reset

Device PMDDeviceReset
MotionProcessor PMDDeviceReset

Command

CMotionEngine

Flash
Task

PMDCMETaskStart
PMDCMETaskStop

MotionProcessor Any C-Motion Commands

Open Device MotionProcessor PMDAxisOpen
CMotionEngine PMDRPDeviceOpen
Memory32 PMDMemoryOpen32

Parallel PMDPeriphOpenPAR
ISA PMDPeriphOpenISA
COM PMDPeriphOpenCOM
CAN PMDPeriphOpenCAN
TCP PMDPeriphOpenTCP
UDP PMDPeriphOpenUDP

Peripheral

Device PMDRPDeviceOpen

MotionProcessor PMDMPDeviceOpen

MultiDrop PMDPeriphOpenMultiDrop

Close

Peripheral PMDPeriphClose
Device PMDDeviceClose
MotionProcessor PMDDeviceClose
CMotionEngine PMDDeviceClose
Memory PMDMemoryClose

Send

CMotionEngine PMDPeriphSend
Peripheral PMDPeriphSend

Receive

CMotionEngine PMDPeriphReceive
Peripheral PMDPeriphReceive

Write

Memory Dword PMDMemoryWrite
Peripheral Byte PMDPeriphWrite

Word PMDPeriphWrite

Read

Memory Dword PMDMemoryRead
Peripheral Byte PMDPeriphRead

Word PMDPeriphRead

Set

CMotionEngine Console
Device Default PMDSetDefault

Get

CMotionEngine

Console
TaskState PMDCMEGetTaskState

Device

Default PMDGetDefault
ResetCause PMDMBGetResetCause
Version PMDDeviceGetVersion
PMD Resource Access Protocol Programmer’s Reference 31

PRP Reference3
3.6.2 Action Table - Alphabetical Order

Action Resource Sub-action C Procedure
Close CMotionEngine PMDDeviceClose

Device PMDDeviceClose
Memory PMDMemoryClose
MotionProcessor PMDDeviceClose
Peripheral PMDPeriphClose

Command CMotionEngine Flash

Task PMDCMETaskStart
PMDCMETaskStop

MotionProcessor Any C-Motion Commands

Get CMotionEngine Console
TaskState PMDCMEGetTaskState

Device Default PMDDeviceGetDefault
ResetCause PMDMBGetResetCause
Version PMDDeviceGetVersion

NOP any

Open Device CAN PMDPeriphOpenCAN
CMotionEngine PMDRPDeviceOpen
ISA PMDPeriphOpenISA
Memory32 PMDMemoryOpen32
MotionProcessor PMDAxisOpen
COM PMDPeriphOpenCOM
Parallel PMDPeriphOpenPAR
TCP PMDPeriphOpenTCP
UDP PMDPeriphOpenUDP

Peripheral Device PMDRPDeviceOpen
MotionProcessor PMDMPDeviceOpen
MultiDrop PMDPeriphOpenMultiDrop

Read Memory Dword PMDMemoryRead
Peripheral Byte PMDPeriphRead

Word PMDPeriphRead

Receive CMotionEngine PMDPeriphReceive
Peripheral PMDPeriphReceive

Reset Device PMDDeviceReset
MotionProcessor PMDDeviceReset

Send CMotionEngine PMDPeriphSend
Peripheral PMDPeriphSend

Set CMotionEngine Console
Device Default PMDDeviceSetDefault

Write Memory Dword PMDMemoryWrite
Peripheral Byte PMDPeriphWrite

Word PMDPeriphWrite
32 PMD Resource Access Protocol Programmer’s Reference

3

PM

Close various

Coding:

Arguments: none

Return Data: none

Packet
Structure:

Description: The Close action may be used to free any resource that was originally returned by an Open action.
After closing, such a resource no longer exists and will signal an error if an action is addressed to it.

Close will close an open TCP connection if applied to a TCP peripheral. For reasonably sized
networks that are static it may never be necessary to use Close. It is an error to send a Close action
to a resource that was not returned by Open.

C language
syntax:

PMDresult PMDPeriphClose(PMDPeriph *periph);
PMDresult PMDDeviceClose(PMDDevice *device);
PMDresult PMDMemoryClose(PMDMemory *ram);

action sub-action resource
4 - various

write 1 2 4
7 6 5 4 3 2 1 0

write resource address
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 33

3

34
Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Command Flash CMotionEngine action is used to install a user program in a C-Motion Engine.
The flash process proceeds in three steps, each with a separate value of the FlashCmd argument. In
addition to FlashCmd, this action may include many bytes of message body, depending on the step.

If any step of the flash procedure gives an error response then the procedure must be restarted
from the beginning. No actions may be sent between flash procedure actions. The steps, in order
of execution, are:

1. FlashStart: The body bytes are a four byte length of the flash image, least significant byte first.
If this step is successful the user program flash is erased. The length may be specified as zero,
in which case no new user program is installed, and no further steps need be taken.

2. FlashData: The body bytes are sequential parts of the entire flash image, in order.

3. FlashEnd: There are no body bytes. This action verifies the checksum of the program image
received. If it finishes successfully then a new user program has been installed and may be run
using the Command Task CMotionEngine action.

C language
syntax:

The PMD C library does not support this operation. Pro-Motion may be used to flash user code
images.

action sub-action resource
2 2 1

name instance encoding
FlashCmd FlashStart 1

FlashData 2
FlashEnd 3

write 1 2 2
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write FlashCmd
7 6 5 4 3 2 1 0

write body byte 0
7 6 5 4 3 2 1 0

write body byte 1 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0
CommandFlash CMotionEngine
PMD Resource Access Protocol Programmer’s Reference

3

P

CommandTask CMotionEngine
MD Resource Access Protocol Programmer’s Reference 35

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Command Task CMotionEngine action is used to start or stop a C-Motion Engine user program.
The two cases are distinguished by the argument option.

If option is start, then if a user program is currently running or if no user program is installed this
action will return an error code.

If option is stop, then any running user program will be stopped. If no user program is currently
running in the C-Motion Engine then this action will return an error code.

It is the user’s responsibility to ensure safety when starting or stopping a user program that controls
motors. It is not possible to predict the state of the PRP device or of its motion processor at the
instant that the user program is stopped. PMD strongly recommends that a task be stopped only
to correct unrecoverable errors and that the PRP device and any devices that it controls be put
immediately into a known safe state using host commands. Because the card resources and the
dynamic heap are not in a known state it is not safe to restart a task after stopping it without first
resetting the entire device.

C language
syntax:

PMDresult PMDCMETaskStart(PMDDeviceHandle *pDevice);
PMDresult PMDCMETaskStop(PMDDeviceHandle *pDevice);

action sub-action resource
2 1 1

name instance encoding
option 1 start

2 stop

write 1 2 2
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write option
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

3

36

Command MotionProcessor

Coding:

Arguments: Magellan command and arguments
rxCount, 2 bit count of words returned.

Return Data: Magellan return data

Packet
Structure:

Description: The Command action directed to a MotionProcessor resource sends a Magellan protocol command
to the motion processor indicated by the address field. A sub-action field is not used, instead a
Magellan protocol command packet follows the header immediately.

Magellan commands are documented in the Magellan Motion Processor Programmer’s Reference Guide,
with the addition of the rxCount parameter. A Magellan protocol packet consists of at least one 16-
bit command word, followed by zero to three argument words. The first byte of command word
comprises two fields, bits 6 and 7 are the rxCount field, the number of words that are expected as
returned values from the command. The remaining bits 0 – 5 are the Magellan axis addressed. The
second byte of the command word is an opcode for the Magellan command. Each command takes
a fixed number of arguments and returns a fixed number of return data. The arguments and data
are encoded as big-endian quantities, in contrast to other PRP multi-byte arguments and data: 16-
bit words are sent most significant byte first, followed by least significant byte, 32-bit words are sent
in order of significance, starting with the most significant byte, and ending with the least significant.

If the status field of the return packet PRP header is zero then the return data of the Magellan
command follow. If the Magellan motion processor reports an error then the status field of the
return header will be 1 (error), and the Magellan error code will follow. Magellan error codes are
documented in the Magellan Motion Processor Programmer’s Reference Guide, and do not overlap with any
PRP or PMD C library error codes. The error code will not be encoded as a big-endian value.

C language
syntax:

All C-Motion command procedures use this action. See the Magellan Motion Processor Programmer’s
Guide for documentation of C-Motion commands and C language syntax.

action sub-action resource
2 none 2

write 1 2 2
7 6 5 4 3 2 1 0

write 2 address
7 6 5 4 3 2 1 0

write rxCount Magellan axis
7 6 5 4 3 2 1 0

write Magellan command code
7 6 5 4 3 2 1 0

write Magellan arguments …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read Magellan data …
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

GetConsole CMotionEngine
Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Get Console CMotionEngine action retrieves a peripheral address corresponding to a
communications channel used for output of debugging and diagnostic messages by C-Motion user
programs. The result of this action may not be meaningful if the console output was initially Set
from a different device than the Get is issued from.

C language
syntax:

None, this action is not supported by the C library.

action sub-action resource
10 4 1

name type meaning
Console unsigned 8 bit Peripheral address for console output

write 1 2 10
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read Console
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 37

3

38

GetDefault Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Get Default Device action is used to retrieve the value of a device default. Device defaults are
various non-volatile properties of the PRP device, for example the IP address, or whether to run a
user program immediately after power up. The length of DefaultValue depends on the particular
data type, and is encoded in the upper byte of DefaultCode. A length value of zero means two bytes,
one means four bytes. Please see the description of Set Default Device on page 70 for a ta‘ble of
supported default codes and their meaning.

C language
syntax:

PMDresult PMDDeviceGetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

Note: At most value Size bytes will be written to the location pointed to by value.

action sub-action resource
10 2 0

name type meaning
DefaultCode unsigned 32 bit default identifier

name type meaning
DefaultValue varies varies – see Set ValueDefault

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write DefaultCode byte 0
7 6 5 4 3 2 1 0

write DefaultCode byte 1
7 6 5 4 3 2 1 0

write DefaultCode byte 2
7 6 5 4 3 2 1 0

write DefaultCode byte 3
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read DefaultValue byte 0
7 6 5 4 3 2 1 0

read DefaultValue byte 1 …
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

GetResetCause Device
Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Get ResetCause Device action retrieves the cause of the last device reset.

C language
syntax:

PMDuint16 PMDMBGetResetCause(PMDAxisHandle* axis_handle,
 PMDuint16* resetcause)

see Please see the Magellan Motion Processor Programmer’s Reference for procedure documentation.

action sub-action resource
10 3 0

name type instance encoding
ResetCause unsigned 16 bit 0x0800 System Watchdog

0x1000 hard reset
0x2000 under voltage
0x4000 external
0x8000 watchdog

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 3
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read ResetCause byte 0
7 6 5 4 3 2 1 0

read ResetCause byte 1
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 39

3

40

GetTaskState CMotionEngine
Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Get TaskState CMotionEngine action retrieves the current state of the user program in the C-
Motion Engine addressed. Task states may be changed by using the Command Task CMotionEngine
action.

C language
syntax:

PMDresult PMDCMEGetTaskState(PMDDeviceHandle *pDevice,
PMDuint32 *state);

action sub-action resource
10 5 1

name type instance encoding
TaskState unsigned 8 bit 0 no program

1 not started
2 running

write 1 2 10
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 5
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read TaskState
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

GetVersion Device
Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Get Version Device action retrieves version information for the PRP device addressed.

C language
syntax:

PMDresult PMDDeviceGetVersion(PMDDeviceHandle *hDevice,
 PMDuint16 *major,
 PMDuint16 *minor);

action sub-action resource
10 1 0

name type range
MajorVersion unsigned 16 bit 0-0xffff
MinorVersion unsigned 16 bit 0-0xffff

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read MinorVersion byte 0
7 6 5 4 3 2 1 0

read MinorVersion byte 1
7 6 5 4 3 2 1 0

read MajorVersion byte 0
7 6 5 4 3 2 1 0

read MajorVersion byte 1
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 41

3

42

NOP any

Coding:

Arguments: none

Return Data: none

Packet
Structure:

Description: The NOP action does not result in any action on the part of the resource addressed, but may be
used to verify that a resource with the given address exists. If the status field of the reply header is
nonzero then an error of InvalidAddress indicates that no resource with the supplied address exists.

C language
syntax:

None, but C language libraries may use the NOP action internally.

action sub-action resource
0 none any

write 1 2 0
7 6 5 4 3 2 1 0

write resource address
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

OpenCAN Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

action sub-action resource
3 21 0

name type range
CANController unsigned 8 bit 0
TransmitIdentifier unsigned 32 bit 0-2047
ReceiveIdentifier unsigned 32 bit 0-2047
EventIdentifier unsigned 32 bit 0-2047

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 21
7 6 5 4 3 2 1 0

write CANController
7 6 5 4 3 2 1 0

write TransmitIdentifier least significant byte
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 1
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 2
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 3
7 6 5 4 3 2 1 0

write ReceiveIdentifier least significant byte
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 1
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 2
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 3
7 6 5 4 3 2 1 0

write EventIdentifier byte 0
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 43

3

44

OpenCAN Device (cont.)
Description: The Open CAN Device action is a request to a PRP device to return a PRP peripheral address
associated with a CAN controller and two CAN identifiers on the device. CANController is the local
physical CAN controller; for all current PRP devices there is at most one CAN controller, so this
argument should be zero. TransmitIdentifier and ReceiveIdentifier are CAN identifiers used for
sending and receiving messages. The point of view is the device, so TransmitIdentifier is used for
sending messages from the PRP device to the peripheral CAN device, and ReceiveIdentifier should
be used by the peripheral device to send messages to the PRP device. If either TransmitIdentifier or
ReceiveIdentifier is zero than it will be ignored, and either transmit or receive disabled for the
resulting peripheral.

EventIdentifer is a CAN identifier used for receiving asynchronous event notifications from a PRP
device or Magellan Motion Processor. If the requested peripheral is associated with some other
device then EventIdentifier should be zero.

The return value, PeriphAddress, is a PRP address that may be used with the resource type
Peripheral for addressing the newly opened CAN peripheral until it is closed.

C language
interface:

PMDresult PMDPeriphOpenCAN(PMDPeriph *periph,
 PMDDevice *device,
 PMDuint32 TransmitIdentifier,
 PMDuint32 ReceiveIdentifier,
 PMDuint32 EventIdentifier);

write EventIdentifier byte 1
7 6 5 4 3 2 1 0

write EventIdentifier byte 2
7 6 5 4 3 2 1 0

write EventIdentifier byte 3
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

OpenCMotionEngine Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open CMotionEngine Device action is used to request a connection to a C-Motion Engine on a
remote PRP device. The CMEAddress argument indicates which CMotionEngine resource on the
remote device is to be used, for current PRP devices there is only one, so its address is always zero.

The returned RemoteAddress may be used as the address for, for example CommandStartTask
actions to start a user program, Send and Receive actions to read and write user packets to a user
program, and so forth.

It is not necessary to use OpenCMotionEngine to gain access to a C-Motion Engine on a local PRP
device, that is, one that is directly connected to a host. For a local device one should simply use PRP
address zero to address the C-Motion Engine.

C language
syntax:

This call is performed as needed when opening a PRP device using the PMDRPDeviceOpen call.
In the C interface separate handles to CMotionEngine resources are not required.

action sub-action resource
3 3 0

name type range
CMEAddress unsigned 8 bit 0

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 3
7 6 5 4 3 2 1 0

write CMEAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 45

3

46

OpenISA Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open ISA Device action is a request to a Prodigy/CME device to return a PRP address for a
peripheral for input and output to the ISA bus using the base address ISAAdress. The Write and
Read actions may be used for output and input using addresses offset from the base address of the
newly returned peripheral, or Send and Receive may be used for output and input at the base
address.

EventIRQ is used to specify the interrupt channel used for signaling Magellan or Prodigy/CME
asynchronous events. EventIRQ is not meaningful for peripherals that are not connected to a
Magellan or Prodigy/CME device, and if not used should be set to zero.

C language
syntax:

PMDresult PMDPeriphOpenISA(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint16 boardAddress,
 PMDuint16 eventIRQ);

action sub-action resource
3 19 0

name type range
ISAAddress unsigned 16 bit 0-0xfff
EventIRQ unsigned 8 bit 1-15

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 19
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write ISAAddress Byte 0
7 6 5 4 3 2 1 0

write ISAAddress Byte 1
7 6 5 4 3 2 1 0

write EventIRQ
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

OpenMemory32 Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open Memory32 Device action is used to request a connection to a Memory resource for 32-
bit wide access on a remote PRP device. For current PRP devices the only Memory resource is the
dual-ported RAM. The MemoryAddress argument indicates which Memory resource on the remote
device is to be used, for current PRP devices there is only one, so its address is always zero.

The returned RemoteAddress may be used as the address when accessing the rersource, for example
Read and Write actions to read and write values from a remote dual-ported RAM.

It is not necessary to use Open Memory32 to gain access to a dual-ported RAM on a local PRP
device, that is, one that is directly connected to a host. For a local device one may simply use PRP
address zero to address the memory. Open Memory32 will, however, return the correct address for
a local device.

C language
syntax:

PMDresult PMDMemoryOpen32(PMDMemoryHandle *hMemory,
 PMDDeviceHandle *hDevice,
 PMDMemoryId id);

action sub-action resource
3 2 0

name type range
MemoryAddress unsigned 8 bit 0-31

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write MemoryAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 47

3

48

OpenMotionProcessor Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open MotionProcessor Device action is used to request a connection to a Magellan Motion
Processor that is part of a remote PRP device, that is, a device that is accessible only through
another PRP device, and not directly via a TCP connection or other communication channel.

To access a motion processor on a local PRP device it is sufficient to use the local PRP address of
the motion processor. Since all current PRP cards have one on-card motion processor that address
is always zero.

LocalAddress is the local PRP address of the motion processor, as discussed above, this address is
always zero for current PRP devices. The returned value RemoteAddress is a PRP address that may
be used to send commands to the newly contacted motion processor. Once opened, the motion
processor may be commanded in exactly the same way as a motion processor on a local device.

C language
syntax:

PMDresult PMDAxisOpen(PMDAxisHandle *hAxis,
 PMDDeviceHandle *hDevice,
 PMDAxis axisNumber);

axisNumber is the motion processor axis to associate with the axis handle, LocalAddress in the C
library case is always zero.

action sub-action resource
3 0 0

name type range
LocalAddress unsigned 8 bit 0-31

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write LocalAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

OpenCOM Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open COM Device action is a request to a PRP device to return a PRP peripheral address
associated with a serial port on the device. SerialPort is the local physical serial port on the device
itself: 0 for COM1, and 1 for COM2. SerialMode is a 16 bit word encoding serial parameters as
shown in the table below. The return value, PeriphAddress, is a PRP address that may be used with
the resource type Peripheral for addressing the newly opened serial peripheral until it is closed.

In order to open a peripheral that uses the PRP multi-drop serial protocol it is necessary to first
open a COM peripheral using the Open Device OpenCOM action, and then to use the Open
Peripheral OpenMultiDrop action.

action sub-action resource
3 20 0

name type range
SerialPort unsigned 8 bit 0-1
SerialMode unsigned 16 bit see below

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 20
7 6 5 4 3 2 1 0

write SerialPort
7 6 5 4 3 2 1 0

write multidrop address 0 protocol
7 6 5 4 3 2 1 0

write protocol stop bits parity transmission rate
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0

SerialMode Encoding
Bit Number Name Instance Encoding

0-3 transmission rate 1200 baud 0
2400 baud 1
9600 baud 2
19200 baud 3
57600 baud 4
115200 baud 5
230400 baud 6
460800 baud 7
D Resource Access Protocol Programmer’s Reference 49

3

50

OpenCOM Device (cont.)
C language
syntax:

PMDresult PMDPeriphOpenCOM(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDSerialPort port,
 PMDSerialBaud baud,
 PMDSerialParity parity,
 PMDSerialStopBits stopbits);

4-5 parity none 0
odd 1
even 2

6 stop bits 1 0
2 1

7-8 protocol point-to-point 0
multi-drop 3

9-10 reserved 0

10-15 multi-drop
address

0 0

-
63 63

SerialMode Encoding
Bit Number Name Instance Encoding
PMD Resource Access Protocol Programmer’s Reference

3

PM

OpenPAR Device
Coding

Arguments:

Returned Data:

Packet
Structure:

Description: The Open PAR Device action is a request to open a connection to a parallel peripheral channel on
a PRP device. Once such a peripheral is open the peripheral read or write actions may be used with
it. Address is used to specify the channel to open; MemoryWidth to specify the size in bytes of data
transfers, and EventIRQ to specify the interrupt in connection with the channel.

The return value RemoteAddress is a PRP address that may be used with resource type Peripheral
for addressing the opened channel.

Currently only the ION/CME digital drive supports parallel peripherals, which are used for digital
input/output and for analog input. Consult the ION/CME Digital Drive User’s Manual for details.

C language
interface:

PMDresult PMDPeriphOpenPAR(
 PMDPeriphHandle*hPeriph
 PMDDeviceHandle*hDevice,
 WORD address,

BYTE EventIRQ,
PMDDataSize datasize);

action sub-action resource
3 18 0

name type range
Address unsigned 16 bit 0-0xffff
EventIRQ unsigned 8 bit 0-0xff
MemoryWidth unsigned 8 bit 1,2,4

name type range
PeriphAddress unsigned 8 bit 0-0xff

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 18
7 6 5 4 3 2 1 0

write Address low byte
7 6 5 4 3 2 1 0

write Address high byte
7 6 5 4 3 2 1 0

write EventIRQ
7 6 5 4 3 2 1 0

write MemoryWidth
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 51

3

52

OpenTCP Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open TCP action is a request to a PRP device to return a PRP peripheral address associated
with an Ethernet TCP connection. EthernetInterface is the local physical Ethernet interface; for all
current PRP devices there is one Ethernet interface, so this argument should be zero.

IPAddress is the remote address to which a connection should be opened. If IPAddress is zero, then
the a port will be opened that will accept incoming connections, one incoming connection at a time
may be handled by such a port. TCPPort is the TCP port to connect to or to listen on.

The return value, PeriphAddress, is a PRP address that may be used with the resource type
Peripheral for addressing the newly opened Ethernet peripheral until it is closed.

action sub-action resource
3 22 0

name type range
EthernetInterface unsigned 8 bit 0
IPAddress unsigned 32 bit 0-0xffffffff
TCPPort unsigned 16 bit 0-0xffff

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 22
7 6 5 4 3 2 1 0

write EthernetInterface
7 6 5 4 3 2 1 0

write IPAddress least significant byte
7 6 5 4 3 2 1 0

write IPAddress byte 1
7 6 5 4 3 2 1 0

write IPAddress byte 2
7 6 5 4 3 2 1 0

write IPAddress byte 3
7 6 5 4 3 2 1 0

write TCPPort byte 0
7 6 5 4 3 2 1 0

write TCPPort byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

OpenTCP Device (cont.)
C language
interface:

PMDresult PMDPeriphOpenTCP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 TCPPort);

D Resource Access Protocol Programmer’s Reference 53

3

54

OpenUDP Device
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open UDP Device action is a request to a PRP device to return a PRP peripheral address
associated with an Ethernet UDP port and remote IP address. EthernetInterface is the local physical
Ethernet interface; for all current PRP devices there is one Ethernet interface, so this argument
should be zero.

IPAddress is the remote address to which UDP packets should be sent. If IPAddress is zero then the
a port will be opened that will accept incoming UDP packets. UDPPort is the UDP port to connect
to or to listen on.

action sub-action resource
3 23 0

name type range
EthernetInterface unsigned 8 bit 0
IPAddress unsigned 32 bit 0-0xffffffff
UDPPort unsigned 16 bit 0-0xffff

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 23
7 6 5 4 3 2 1 0

write EthernetInterface
7 6 5 4 3 2 1 0

write IPAddress least significant byte
7 6 5 4 3 2 1 0

write IPAddress byte 1
7 6 5 4 3 2 1 0

write IPAddress byte 2
7 6 5 4 3 2 1 0

write IPAddress byte 3
7 6 5 4 3 2 1 0

write UDPPort least significant byte
7 6 5 4 3 2 1 0

write UDPPort byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

Open UDP Device (cont.)
The return value, PeriphAddress, is a PRP address that may be used with the resource type
Peripheral for addressing the newly opened Ethernet peripheral until it is closed.

C language
interface:

PMDresult PMDPeriphOpenUDP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 UDPPort);
D Resource Access Protocol Programmer’s Reference 55

3

56

OpenDevice Peripheral
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open Device Peripheral action is used to allocate a PRP address for a Device resource that may
be used to communicate with a PRP device accessible using an existing peripheral connection, for
example a TCP or serial connection. The RemoteAddress returned may be used for any PRP action
that may be addressed to a Device resource; it is typically used to obtain addresses for remote
motion processors, dual-ported RAM, and C-Motion engines.

C language
syntax:

PMDresult PMDRPDeviceOpen(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

action sub-action resource
3 1 4

name type range
PeripheralAddress unsigned 8 bit 0-31

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write PeriphAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

OpenMotionProcessor Peripheral
Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Open MotionProcessor Peripheral action is used to allocate a PRP address to a Magellan Motion
Processor that is accessible using an existing PRP peripheral resource, using a serial port, CAN bus,
or PC-104 ISA bus. The PRP RemoteAddress returned may be used to command the motion
processor using the Command action. The PRP device to which this action is directed will perform
the translation from the PRP protocol for Magellan motion processor commands to the native
Magellan protocol.

For example, to use a Prodigy/CME card to control an ION module on a CAN bus, one would:

1. Open a CAN peripheral with the CAN identifiers used by the module for command send and
receive, using OpenCAN directed to the Prodigy/CME Device.

2. Use Open MotionProcessor to get an address for the remote ION using the peripherals opened
in step 1.

3. Send commands to the remote ION using the MotionProcessor address returned in step 2.

C language
syntax:

PMDresult PMDMPDeviceOpen(PMDDeviceHandle *hDevice,
 PMDPeriph *hPeriph);

action sub-action resource
3 0 4

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 57

3

58

OpenMultiDrop Peripheral
Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open MultiDrop Peripheral action is used to obtain a peripheral that uses the PMD multi-drop
serial protocol used for communicating with Magellan attached devices, such as non-CME ION
modules, or with other PRP devices. The peripheral resource to which this action is directed must
have been obtained using the Open COM Device action; the “parent” peripheral must not be closed
before the multi-drop peripheral returned by Open MultiDrop, but should not be used for
transmitting data on the serial line. The RemoteAddress returned by the Open MultiDrop action
will typically be used as a target for Open MotionProcessor or Open Device.

For more information on the multi-drop protocol, see Chapter 2, PMD Resource Access Protocol (PRP)
Tutorial and the Magellan Motion Processor User’s Guide.

C language
syntax:

PMDresult PMDPeriphOpenMultiDrop(PMDPeriphHandle *hPeriph,
 PMDPeriphHandle *hParent,
 unsigned MultiDropAddress);

action sub-action resource
3 25 4

name type range
MultiDropAddress unsigned 8 bit 0-31

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 25
7 6 5 4 3 2 1 0

write MultiDropAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

ReadByte Peripheral
Coding:

Arguments:

Returned Data: data bytes

Packet
Structure:

Description: The Read Byte Peripheral action is used to read a sequence of data bytes from a peripheral associated
with a PC-104 ISA bus. The Offset argument is an offset from the base address that was specified
when the peripheral was opened. The Length argument specifies the number of bytes to read; all
bytes are read from the same addresses.

The data read is returned as the message body of the response packet.

This action is not applicable to other types of peripheral, and an InvalidResource error will be
returned if another peripheral type is specified.

C language
syntax:

PMDresult PMDPeriphRead(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

action sub-action resource
8 1 4

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes
Length unsigned 16 bit 0-0xffff bytes

write 1 2 8
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read data byte 0 …
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 59

3

60

ReadDword Memory
Coding:

Arguments:

Returned Data: data bytes

Packet
Structure:

Description: The Read DWord Memory action is used to read a sequence of 32 bit double words from a random
access memory. The Offset argument is an address in the memory, typically an address in a dual-
ported RAM. Offset should be divisble by four, the results of reading from a non-aligned address
are unpredictable. The Length argument is the number of double words to read, exactly this number
of double words are returned as the message body of the response packet.

 C language
syntax:

PMDresult PMDMemoryRead (PMDMemory *ram,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

action sub-action resource
8 4 3

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes
Length unsigned 16 bit 0-0xffff double words

write 1 2 8
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read data word 0 byte 0
7 6 5 4 3 2 1 0

read data word 0 byte 1 …
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

Read Word Peripheral
Coding:

Arguments:

Returned Data: data bytes

Packet
Structure:

Description: The Read Word Peripheral action is used to read a sequence of 16 bit data words from a peripheral
associated with a PC-104 ISA bus. The Offset argument is an offset from the base address that was
specified when the peripheral was opened; Offset must be even. The Length argument specifies the
number of bytes to read; Length must also be even. The data read is returned as the message body
of the response packet.

The data read is returned as the message body of the response packet.

This action is not applicable to other types of peripheral, and an InvalidResource error will be
returned if another peripheral type is specified.

C language
syntax:

PMDresult PMDPeriphRead(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

action sub-action resource
8 1 4

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes
Length unsigned 16 bit 0-0xffff bytes

write 1 2 8
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read data byte 0 …
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 61

3

62

Read Word IO
Coding:

Arguments:

Returned Data: data word

Packet
Structure:

Description: The Read Word IO action is used to read the value at an IO port of an ION/CME module.

C language
syntax:

PMDresult PMDIORead (PMDIOHandle *hIO,
PMDuint16 *data

action sub-action resource
8 2 5

name type range units
IOtype unsigned 8 bit 01 PMDIOtype

write 2 2 8
7 6 5 4 3 2 1 0

write 5 5 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write IOtype
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read data word 0 byte 0
7 6 5 4 3 2 1 0

read data word 0 byte 1
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

Receive CMotionEngine

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Receive CMotionEngine action is used to receive user packet data sent by a user program
running on a C-Motion Engine. See the description of Send CMotionEngine (p. 68) for a
description of the user packet mechanism. C-Motion user programs send user packets by calling
PMDPeriphSend using a peripheral opened with the PMDPeriphOpenCME procedure.

The timeout argument specifies the maximum number of milliseconds to wait for data before
failing with a PRP timeout error. A timeout value of 65535 (0xffff) means no time limit. In case of a
timeout no bytes will be returned.

The C-Motion Engine buffers only one outgoing user packet at a time, so if no host is waiting to
receive a user packet it may be overwritten by a newer user packet.

The size of the message received is given implicitly by the size of the return packet. How the size
of the return packet is determined depends on the transport mechanism in use.

C language
syntax:

PMDresult PMDPeriphOpenCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

PMDresult PMDPeriphReceive(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 *nReceived,
 PMDuint32 nExpected,
 PMDuint32 timeout);

action sub-action resource
6 - 1

name type range units
timeout unsigned 16 bit 0-0xffff msec
nExpected unsigned 16 bit 0-0xffff bytes

write 1 2 6
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read received data byte 0
7 6 5 4 3 2 1 0

read received data byte 1 …
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 63

3

64

Receive Peripheral

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Receive Peripheral action is used to receive data from some remote device using the
communication channel specified by the Peripheral resource to which it is addressed.

The timeout argument specifies the maximum number of milliseconds to wait for data before failing
with a PRP timeout error. A timeout value of 65535 (0xffff) means no time limit. In case of a time
out no bytes will be returned.

The nExpected argument specifies the maximum number of bytes to receive. For data that are
naturally arranged in packets, for example TCP and UDP, only one packet will be received so the
actual number of bytes returned may be less than nExpected. For data that are not arranged in
packets, for example data received on a serial port peripheral, exactly nExpected bytes must be
received or a timeout results and no data are returned.

The number of bytes of data actually returned is encoded in the size of the packet, how that size is
transmitted depends on the transport mechanism.

If the peripheral connection has been closed by some external action, for example a TCP
connection that has been closed by a peer, then a status of PMD_ERR_NotConnected will be
returned. Such a peripheral must be closed using the Close action. In the case of a TCP connection,
after closing the unconnected peripheral a new peripheral with the same TCP port may be opened
using the OpenTCP action.

action sub-action resource
6 - 4

name type range units
timeout unsigned 16 bit 0-0xffff msec
nExpected unsigned 16 bit 0-0xffff bytes

write 1 2 6
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write nExpected byte 0
7 6 5 4 3 2 1 0

write nExpected byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read received data byte 0
7 6 5 4 3 2 1 0

read received data byte 1 …
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

Receive Peripheral (cont.)

C language
syntax:

PMDresult PMDPeriphReceive(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 *nReceived,
 PMDuint32 nExpected,
 PMDuint32 timeout);
D Resource Access Protocol Programmer’s Reference 65

3

66

Reset Device

Coding:

Arguments: none

Return Data: none

Packet
Structure:

Description: The Reset Device action may be used to soft reset a PRP device. No return packet will be sent after
this command. The return packet for the next action will be a Reset error (0x8001) error reply,
regardless of the action requested. A Reset error in reply to an action indicates that the command
was not processed, and should be re-sent.

C language
syntax:

PMDresult PMDDeviceReset(PMDDeviceHandle *hDevice);

action sub-action resource
1 - 0

write 2 2 1
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

Reset MotionProcessor

Coding:

Arguments: none

Return Data: none

Packet
Structure:

Description: The Reset MotionProcessor action may be used to hard reset a Magellan Motion Processor that is
part of a PRP device. In order to soft reset a motion processor the Command action with a Magellan
reset command may be used. It is an error to direct this action to a motion processor that is not
part of a PRP device, for example an ION module.

C language
syntax:

PMDresult PMDDeviceReset(PMDDeviceHandle *hDevice);

action sub-action resource
1 - 2

write 1 2 1
7 6 5 4 3 2 1 0

write 2 address
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 67

3

68

Send CMotionEngine

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Send CMotionEngine action is used to send a user packet to a user program running on a C-
Motion Engine, which may read them using the PMDPeriphReceive procedure applied to a
peripheral opened with PMDPeriphOpenCME. The user packet mechanism allows arbitrary user
data to be sent to or received from user programs without opening dedicated peripheral channels
– the packets are encapsulated in PRP packets. User packets are sent as discrete units, and only one
packet may be buffered before being read by a user program.

The timeout argument specifies how many milliseconds to wait for the user program to read the
user packet. A timeout value of 65535 (0xffff) means no time limit.

The user packet mechanism is the simplest way to exchange data with running C-Motion Engine
user programs, and has the advantage of working the same way regardless of the transport
mechanism used to send packets, but it is limited in performance and flexibility. If user packets are
not sufficient then peripheral channels specific to the user application should be opened and used.

The maximum size of a user packet is 250 bytes, as given by USER_PACKET in the file
PMDPeriph.h. The actual size of the user packet sent is implicitly given by the size of the outgoing
PRP packet. How the PRP packet size is determined depends on the transport mechanism in use.

C language
syntax:

PMDresult PMDPeriphOpenCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 nCount,
 PMDuint32 timeout);

action sub-action resource
5 - 1

name type range units
timeout unsigned 16 bit 0-0xffff msec

write 1 2 5
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write send data byte 0
7 6 5 4 3 2 1 0

write send data byte 1 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

Send Peripheral
Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Send Peripheral action is used to transmit data to some remote device using the communication
channel specified by the Peripheral resource to which it is addressed. The peripheral might be a
TCP Ethernet connection, a serial port, pair of CAN bus identifiers, or any other peripheral type.
The number of bytes to send is implicit in the size of the PRP packet, how this is determined
depends on the transport mechanism in use.

If all of the data cannot be sent within timeout milliseconds then a PRP timeout error will be
returned. In which case some of the data may have been sent, it is not possible to tell. A timeout
value of 65535 (0xffff) means no time limit.

If the peripheral connection has been closed by some external action, for example a TCP
connection that has been closed by a peer, then a status of PMD_ERR_NotConnected will be
returned. Such a peripheral must be closed using the Close action. In the case of a TCP connection,
after closing the unconnected peripheral a new peripheral with the same TCP port may be opened
using the OpenTCP action.

C language
syntax:

PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 nCount,
 PMDuint32 timeout);

action sub-action resource
5 - 5

name type range units
timeout unsigned 16 bit 0-0xffff msec

write 1 2 5
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write send data byte 0
7 6 5 4 3 2 1 0

write send data byte 1 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0
D Resource Access Protocol Programmer’s Reference 69

3

70

SetConsole CMotionEngine
Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Set Console CMotionEngine action is used to change the destination of console messages from
a user program running in the C-Motion Engine to which the action is addressed. User programs
can emit console messages using the C library procedure PMDprintf. Console messages are
primarily intended for debugging and routine progress monitoring.

The Console argument is the address of a peripheral to be used for console output. If Console is
zero, then all console output will be suppressed. If Console is nonzero it must be the address of a
peripheral that was opened on the same device as the C-Motion engine being addressed – if it is an
inappropriate peripheral address then an error will be returned.

C language
syntax:

None, this action is not currently supported by the C library. Pro-Motion may be used to change
the current console.

action sub-action resource
9 4 3

name type meaning
Console unsigned 8 bit peripheral address

write 1 2 9
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

write Console
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

3

PM

SetDefault Device
Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Set Default Device action is used to change various non-volatile properties of a PRP device, for
example the IP address, or whether to run a user program immediately after power up. The length
of DefaultValue depends on the particular data type, and is encoded in the upper byte of
DefaultCode. The length in bytes is the field value minus one; a length value of zero means one
byte, one means two bytes. Most default values are either two or four bytes long, but some are
longer.

The table below summarizes the set of default values and their codes:

action sub-action resource
9 2 0

name type meaning
DefaultCode unsigned 32 bit default identifier
DefaultValue varies

write 1 2 9
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write DefaultCode byte 0
7 6 5 4 3 2 1 0

write DefaultCode byte 1
7 6 5 4 3 2 1 0

write DefaultCode byte 2
7 6 5 4 3 2 1 0

write DefaultCode byte 3
7 6 5 4 3 2 1 0

write DefaultValue byte 0
7 6 5 4 3 2 1 0

write DefaultValue byte 1 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

Prodigy/CME Defaults

name code
length
(bytes) factory default

DefaultCPMotorType 0x0102 2 0x7777 (All axes set to brushed)
DefaultIPAddress 0x0303 4 0xC0A80202 (192.168.2.2)
DefaultNetMask 0x0304 4 0xFFFFFF00 (255.255.255.0)
D Resource Access Protocol Programmer’s Reference 71

3

72

SetDefault Device (cont.
DefaultIPAddress is the IP address of the Ethernet controller. It is typically necessary to set this
default using the serial interface to suit the network in which a PRP device is to be installed. The
default value is chosen to be part of a reserved IP class, and is not routable on the Internet.

Note that IP addresses are typically written in “dotted quad” notation, where each byte is written
in decimal, separated by a dot. In order to convert from dotted quad notation to hexadecimal write
convert each dot-separated field to hexadecimal and concatenate.

DefaultNetMask is a bitmask defining which IP addresses are directly accessible in the local subnet,
the default is for a class C network, and must typically be changed to suit the network in which the
PRP device is installed.

DefaultGateway is the IP address of the router to be used for all non-local IP addresses. PRP devices
does not support more general routing tables because it is expected that they will usually deal with
hosts on the local network. DefaultGateway must be changed to enable routing to any non-local IP
addresses, but that such routing may not be necessary for many applications.

DefaultTCPPort is the base TCP port used for accepting host commands. In most cases there is no
reason to change the default value of 40100.

DefaultCOM1Mode and DefaultCOM2Mode are serial port modes with the same meaning as
SerialMode in the OpenSerial action, and are applied to the two serial ports immediately after
coming out of reset. Serial port modes may be changed later by using the OpenSerial action.

DefaultRS485Duplex controls whether duplex mode is used in case serial port COM1 is configured
as for RS-485. One means full-duplex, zero means half-duplex.

DefaultCANMode is an encoding of CAN bus parameters similar to that used by Magellan, as
described in the Magellan Motion Processor Programmer’s Command Reference, and are summarized below.
The CAN mode cannot be changed except by using DefaultCANMode, it cannot be changed “on
the fly.”

DefaultGateway 0x0305 4 0x00000000 (0.0.0.0)
DefaultTCPPort 0x0106 2 40100
DefaultCOM1Mode 0x010E 2 0x0004 (57600,n,8,1)
DefaultCOM2Mode 0x010F 2 0x0005 (115200,n,8,1)
DefaultRS485Duplex 0x0110 2 0 (Full duplex)
DefaultCANMode 0x0111 2 0x0000 (1000 kbs)
DefaultAutoStartMode 0x0114 2 0
DefaultConsoleIntfType 0x0118 2 4 (Serial)
DefaultConsoleIntfAddr 0x0119 2 1 (PMDSerialPort2)
DefaultConsoleIntfPort 0x011A 2 5 (PMDSerialBaud115200)

All other values reserved.

DefaultCANMode fields

Bits Name Instance Encoding
0-6 CAN NodeID Node0 0

Node1 … 1

Node127 127

7-12 reserved 0

Prodigy/CME Defaults

name code
length
(bytes) factory default
PMD Resource Access Protocol Programmer’s Reference

3

PM

)SetDefault Device (cont.)
All CAN devices on the same bus must use the same transmission rate in order to communicate
properly. The CAN NodeID encodes a set of CAN identifiers to be used for accepting host
commands and returning responses, and uses the same scheme as do Magellan Motion Processors.
All PRP devices and all Magellan Motion Processors on the same CAN bus must have distinct
NodeIDs. Messages with a CAN identifier of 0x600 + NodeID will be accepted as PRP host
commands, and will be responded to using CAN identifier 0x580 + NodeID. Asynchronous event
notification messages will be sent using CAN identifier 0x180 + NodeID.

DefaultAutoStartMode controls whether a user program in the C-Motion Engine will be run
automatically after coming out of reset. A value of one means that any user program present will
be automatically run, zero means that a user program will not be run until a CommandTaskStart
action is received. Automatic starting of user programs will be inhibited if a user program has
caused a previous reset, for example by causing an exception.

DefaultConsoleIntfType, DefaultConsoleIntfAddr, and DefaultConsoleIntfPort determine the
communications channel that will be used for console (user program output) messages. The
channel used may be changed at run time by using the Set ValueConsole action. The encoding of
these default values is explained in the table below.

C language
syntax:

PMDresult PMDSetDefault(PMDDeviceHandle *hDevice,
 PMDDefault default,
 void *value,
 unsigned valueSize);

13-15 Transmission Rate 1,000,000 baud 0

 800,000 baud 1

 500,000 baud 2

 250,000 baud 3

 125,000 baud 4

 50,000 baud 5

 20,000 baud 6

 10,000 baud 7

Console Output Defaults

DefaultConsoleIntfType
value

peripheral
type

DefaultConsoleIntfAddr
meaning

DefaultConsoleIntfPort
meaning

0 none ignored ignored
1 reserved

2 PCI ignored ignored
3 reserved

4 serial 0 – COM1, 1 – COM2 port settings
5 reserved

6 reserved

7 UDP IP address UDP port
> 7 reserved

DefaultCANMode fields

Bits Name Instance Encoding
D Resource Access Protocol Programmer’s Reference 73

3

74

WriteDWord Memory
Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Write DWord Me‘mory action is used to write a sequence of four byte (32 bit) double
words to a random access memory. The Offset argument is an index or address into the mem-
ory, typically an address in a dual-ported RAM. Offset should be divisible by four, the result of
a non-aligned write is not predictable. As many double words as are supplied in the packet are
written to memory, if the number of bytes supplied is not divisible by four the results are
unpredictable.

C language
syntax:

PMDresult PMDMemoryWrite(PMDMemoryHandle *hRam,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

action sub-action resource
7 4 3

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes

write 1 2 7
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write data dword 0 byte 0
7 6 5 4 3 2 1 0

write data dword 0 byte 1
7 6 5 4 3 2 1 0

write data dword 0 byte 2
7 6 5 4 3 2 1 0

write data dword 0 byte 3 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0
PMD Resource Access Protocol Programmer’s Reference

Coding:

3

PMD Resource Access Protocol Programmer’s Reference 75

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Write Byte Peripheral action is used to write a sequence of data bytes to a peripheral associated
with a PC-104 ISA bus. The Offset argument is an offset from the base address that was specified
when the peripheral was opened. As many bytes as are supplied in the packet are written to the
ISA bus from the address given by the base address plus Offset.

This action is not applicable to other types of peripheral, and an InvalidResource error will be
returned if another peripheral type is specified.

C language
syntax:

PMDresult PMDPeriphWrite (PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 address,
 PMDuint32 length);

action sub-action resource
7 1 4

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes

write 2 2 7
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offfset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write data byte 0...

7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

WriteByte Peripheral

3

PMD Resource Access Protocol Programmer’s Reference 76

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Write Word IO action is used to write a value to a general purpose IO port (digital or
analog) on an ION/CME module. If the IO port type being addressed is a digital IO port, the
mask field is used to specify which bits will be affected by the write.

C language
syntax:

PMDresult PMDIOWrite (PMDIOHandle *hIO,
PMDuint16 *data,
PMDuint16 mask)

action sub-action resource
7 2 5

name type range units
IOtype unsigned 8 bit 0-1 PMDIOtype
Mask unsigned 16 bit 0-0xffff bit mask

unsigned 16 bit 0-0xffff IO dependent

write 2 2 7
7 6 5 4 3 2 1 0

write 5 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write IOtype
7 6 5 4 3 2 1 0

write Mask byte 0
7 6 5 4 3 2 1 0

write Mask byte 1
7 6 5 4 3 2 1 0

write data word 0 byte 0
7 6 5 4 3 2 1 0

write data word 0 byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

Write Word IO

4

4.PMD C Language Library
Procedures
PRP device products include C language libraries for control and communication. Library versions are provided for host
PCs and for the C-Motion Engine included in Prodigy/CME and ION CME. TheCME libraries provide the following
features:

• Resource virtualization. Local and remote resources, for example, motion processors, Prodigy/CME
cards and ION/CME modules are controlled in the same way.

• Procedure call syntax is the same for host programs as for C-Motion Engine programs. (There are a few
procedures only applicable to one environment).

• Host libraries can be easily linked with any C or C++ program, sources are provided.

• C-Motion Engine programs can use standard C libraries.

The PMD C library for controlling Magellan Motion Processors is called “C-Motion,” and is fully documented in the
Magellan Motion Processor Programmer’s Command Reference and the Magellan Motion Processor User’s Guide.

4.1 Naming Conventions

Procedures and data type names in the CME library are prefixed with “PMD.” This prefix is omitted in the binary
protocol documentation below, but must be included in C programs. C-Motion is the PMD library for Magellan Motion
Processor control, and is a subset of the CME libraries. C-Motion procedures and data type names are also prefixed with
“PMD.”

4.2 Data Types

PRP resources are represented by opaque C types. “Opaque” means that reading and writing members of the data
structures without using the library procedures is not supported. All of these structures must be allocated by the calling
program, are passed to library procedures by using a pointer argument, and must not be freed or otherwise written to
until explicitly closed.

These data types include:

• PMDDeviceHandle – There are two types of “device:” an RP device is a device that communicates using
the PRP, that is, a Prodigy/CME card or an ION/CME module; an MP device is a device that
communicates using the Magellan protocol, that is, a non-CME ION module, non-CME prodigy card, or
other “Magellan attached” device.

• PMDAxisHandle – A control axis of a Magellan Motion Processor, which may be part of a Magellan
attached device or of a PRP device.

• PMDPeriphHandle – A connection to a peripheral device over a particular communication channel. The
peripheral data type specifies both the communication channel and any addressing information specific to
a remote device, for example a TCP/IP port number or a PC-104 ISA bus base address.

• PMDMemoryHandle – A dual-ported RAM on a PRP device or a non-CME Prodigy card.
PMD Resource Access Protocol Programmer’s Reference 77

PMD C Language Library Procedures4
The include file “PMDtypes.h” defines typedefs for specific integral types that will be used in the prototypes in this
manual:

• PMDuint32, PMDint32 – unsigned and signed 32-bit integers

• PMDuint16, PMDint16 – unsigned and signed 16-bit integers

• PMDuint8, PMDint8 – unsigned and signed 8-bit integers

Many bitmask and enumerated types are also defined in this file.

4.3 Return Values

Almost all of the PMD library procedures return an integer of type PMDresult, indicating success (zero) or failure
(nonzero). The error values of PMDresult are the same as the PRP error values documented in this manual, and are
all declared in the “PMDecode.h” file. A partial list of these error codes is in for more information.

4.4 C-Motion Engine Macros

A number of C preprocessor macros are required as part of a C-Motion Engine user code program. These macros are
defined in the “UserMain.h” file.

USER_CODE_VERSION (MAJOR, MINOR)
USER_CODE_TASK (UserTCP)

USER_CODE_VERSION encodes version information in a section of the binary that will be used by the C-Motion
Engine runtime code. It should be put once in the main source file at top level (outside of any function definition).

MAJOR and MINOR are user program version numbers, 16-bit constants that will be reported by Pro-Motion.
USER_CODE_VERSION must be present even if you don’t care to maintain a version number.

USER_CODE_TASK should be used to define the main function of the user code program, its argument is the name
of the function, which should accept no arguments and should never return. A user program skeleton follows:

#include “c-motion.h”
#include "usermain.h"
#include "PMDsys.h"

// this macro is required at the beginning of a CME user application
USER_CODE_VERSION (1,0)
// UserTCP is the name of the main task function
USER_CODE_TASK (UserTCP)
{
…

 while (I) {
 // Handle task events
}
// Note: do not return

}

78 PMD Resource Access Protocol Programmer’s Reference

PMD C Language Library Procedures 4
4.5 PMD Library Procedures

This section documents the PMD C language interface to the library procedures for programming aCME PRP device,
both in hosted programs and C-Motion Engine user programs. Most procedure calls are syntactically the same in both
environments, but their implementation is of course quite different.

In many cases a PRP action corresponds closely to the action of a library procedure, but this is not invariable. One
procedure call may involve multiple PRP actions, or none, and whether PRP is used may depend on whether the
procedure call is executed on the host or in a C-Motion Engine user program, and on whether it is directed at a remote
device or the device on which the program itself is running.

There are a few conventions common to many procedures:

• When opening a handle to some object a pointer to an uninitialized instance of the appropriate data type
is passed first, and the open procedure will write to it. The initialized data type should not be written to
as long as it is in use.

• Most procedures return an integer status code of type PMDresult. A zero indicates success, and a non-
zero value failure or error.

• Many procedures that accept a pointer to a PMDDeviceHandle as an argument should be passed a null
pointer to indicate the “local” device. For C-Motion Engine user programs the local device is the device
hosting the C-Motion Engine. For hosted programs, for example when opening a peripheral, the local
device is the host itself.
PMD Resource Access Protocol Programmer’s Reference 79

PMD C Language Library Procedures4
This page intentionally left blank.
80 PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDAxisOpen C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDAxisOpen(PMDAxisHandle *hAxis,
 PMDDeviceHandle *hDevice,
 PMDAxis axis_number);

Visual Basic
Syntax:

Dim axis As New(device, PMDAxisNumber.Axis)

Description: PMDAxisOpen is used to obtain a handle to a single control axis of a Magellan Motion Processor,
which will be used for all C-Motion procedures. The hAxis argument should point to an uninitialized
PMDAxisHandle struct, which should not be freed or written to as long as the handle is required.
The device argument should point to an open PMDDeviceHandle handle, which may represent
either a PMD device or a Magellan attached device. In a C-Motion engine user program, device
may be null, in which case the Magellan processor on the local device will be opened.

For example, to open the first axis on the local Magellan processor from a CME user program:

PMDAxisHandle axis1;
PMDresult result;

result = PMDAxisOpen(&axis1, 0, PMDAxis1);

And to open the second axis on a Magellan attached device accessible by CANBus:

PMDPeriphHandle periph;
PMDDeviceHandle dev;
PMDAxisHandle axis2;
PMDresult result;

// First open the peripheral connection, CAN_TX, CAN_RX, and CAN_EVENT
// depend on how the attached device is configured.
result = PMDPeriphOpenCAN(&periph, 0, CAN_TX, CAN_RX,
 CAN_EVENT);
// Now open an MP Device on the peripheral
if (PMD_NOERROR == result)
 status = PMDMPDeviceOpen(&dev, &periph);
// Now we’re ready to obtain the axis handle.
if (PMD_NOERROR == result)
 result = PMDAxisOpen(&axis2, &dev, PMDAxis2);

Related PRP
Actions:

Open Peripheral MotionProcessor

name type
hAxis pointer to PMDAxisHandle
hDevice pointer to PMDDeviceHandle
axis_number enumeration PMDAxis1 to PMDAxis4
D Resource Access Protocol Programmer’s Reference 81

4

82

PMDTaskGetState C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDTaskGetState(PMDDeviceHandle *hDevice,
 PMDTaskState *state);

Visual Basic
Syntax:

Dim state As PMDTaskState
state = device.TaskStat

Description: The PMDTaskGetState procedure queries a C-Motion Engine for the state of any user program
that might be installed in it. The hDevice argument should be associated with an RP device that is
a device containing a C-Motion Engine. If hDevice is not appropriate then
PMD_ERR_NOT_SUPPORTED will be returned.

The value pointed to by the state argument will be written to indicate the result:

Related PRP
Actions:

Get CMotionEngine TaskState

name type
hDevice pointer to PMDDeviceHandle
state pointer to PMDTaskState enum

PMDTaskState instance encoding
No program installed 1
Program not started 2
Program running 3
Program aborted 4
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDTaskStart C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDTaskStart(PMDDeviceHandle *hDevice);

Visual Basic
Syntax:

device.TaskStart()

Description: PMDTaskStart is used to start a user program installed in the C-Motion Engine that is part of the
CME device associated with the hDevice argument. If hDevice is not a PRP device then
PMD_ERR_Not_Supported will be returned. If no runnable program is installed then
PMD_ERR_UC_NotProgrammed will be returned. If a program is already running, then
PMD_ERR_UC_TaskAlreadyRunning will be returned.

Related PRP
Actions:

Command CMotionEngine Task

name type
hDevice pointer to PMDDeviceHandle
D Resource Access Protocol Programmer’s Reference 83

4

84

PMDTaskStop C-Motion Engine
Arguments:

C language
syntax:

PMDresult PMDTaskStop(PMDDeviceHandle *hDevice);

Visual Basic
Syntax:

device.TaskStop()

Description: PMDTaskStop is used to stop any user program currently running in the C-Motion Engine that is
part of the PRP device associated with the hDevice argument. If device is not a CME PRP device
then PMD_ERR_NOT_SUPPORTED will be returned. If no program is currently running, then
PMD_ERR_UC_TaskNotCreated will be returned. If no program is installed, then
PMD_ERR_UC_NotProgrammed will be returned.

It is the user’s responsibility to ensure safety when starting or stopping a user program that controls
motors. It is not possible to predict the state of the PRP device or of it's motion processor at the
instant that the user program is stopped. PMD strongly recommends that a task be stopped only
to correct unrecoverable errors and that the card and any devices that it controls be put immediately
into a known safe state using host commands. Because the card resources and the dynamic heap
are not in a known state it is not safe to restart a task after stopping it without first resetting the
entire device.

Related PRP
Actions:

Command CMotionEngine CommandTask TaskStop

name type
hDevice pointer to PMDDeviceHandle
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDDeviceClose C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDDeviceClose(PMDDeviceHandle *hDevice);

Visual Basic
Syntax:

device.Close()

Description: PMDDeviceClose is used to free any resources used in maintaining the device handle passed as a
pointer argument. After closing the memory used for the PMDDeviceHandle type may be freed or
re-used for another device.

Related PRP
Actions:

Close Device

Close CMotionEngine

name type
hDevice pointer to PMDDeviceHandle
D Resource Access Protocol Programmer’s Reference 85

4

86

PMDDeviceGetDefault C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDDeviceGetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

Visual Basic
Syntax:

Dim value16 As UInt16
device.GetDefault(PMDDefault.code, value16)

Dim value32 As UInt32
device.GetDefault(PMDDefault.code, value32)

Description: PMDDeviceGetDefault is used to retrieve the value of a device default. Device defaults are various
non-volatile properties of the PRP device for example the IP address, or whether to run a user
program immediately after power up.

hDevice is a pointer to a handle associated with the d to retrieve the value of a device default. Device
defaults are various non-volatile properties of the PRP device being interrogated; in C-Motion
Engine user programs hDevice may be a null pointer, meaning the local device.

default is a numeric default code, please see the description of the Set DefaultDevice action in
section 2.6 for a table of supported default codes and their meaning.

value is a pointer to a data area in which to store the default code, and valueSize is the size, in bytes,
of the area. The size of a default depends on the particular data type, and is encoded in the upper
byte of the default code – a value of zero means one byte, one means two bytes, and n means n – 1
bytes. valueSize is required in order to prevent buffer overruns, an error code will be returned if
valueSize is not large enough to contain the default value.

Two byte default values are generally 16-bit integers, and four byte values 32-bit integers. The value
pointer must be properly aligned to hold these values. It is safe in all cases to require value to be
double-word aligned, one way of accomplishing this is to use a C union type to receive the default
value:
union defaultValue {
 PMDuint16 as_word;
 PMDuint32 as_dword;
 char as_string[32];
}

Related PRP
Actions:

Get Device Default

name type
hDevice pointer to open RP device handle
defaultcode enumerated default code
value pointer to memory area to receive

default value
valueSize maximum size of value area
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDDeviceReset C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDDeviceReset(PMDDeviceHandle *hDevice);

Visual Basic
Syntax:

device.Reset()

Description: PMDDeviceReset is used to hard reset the device, either a d to retrieve the value of a device default.
Device defaults are various non-volatile properties of the PRP device or a Magellan attached device,
associated with its argument. If it is not possible to hard reset the device then
PMD_ERR_NOT_SUPPORTED will be returned. For example, Magellan attached devices
controlled using CANBus, or a serial line may not be hard reset.

Related PRP
Actions:

Reset Device

Reset CMotionEngine

name type
hDevice pointer to PMDDeviceHandle
D Resource Access Protocol Programmer’s Reference 87

4

88

PMDDeviceSetDefault C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDDeviceSetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

Visual Basic
Syntax:

Dim value16 As UInt16
device.SetDefault(PMDDefault.code, value16)

Dim value32 As UInt32
device.SetDefault(PMDDefault.code, value32)

Description: PMDDeviceSetDefault is used to change the value of a device default. Device defaults are various
non-volatile properties of the PRP device, for example the IP address, or whether to run a user
program immediately after power up.

hDevice is a pointer to a handle associated with the PRP device being interrogated; in C-Motion
Engine user programs hDevice may be a null pointer, meaning the local device.

default is a numeric default code, please see the description of the Set DefaultDevice action in
section 2.6 for a table of supported default codes and their meaning.

value is a pointer to a data area in which to store the default code, and valueSize is the size, in bytes,
of the area. The size of a default depends on the particular data type, and is encoded in the upper
byte of the default code – a value of zero means one byte, one means two bytes, and n means n – 1
bytes. valueSize is required as a sanity check, an error code will be returned if valueSize is not large
enough to contain the default value.

Two byte default values are generally 16-bit integers, and four byte values 32-bit integers. The value
pointer must be properly aligned to hold these values. It is safe in all cases to make value to be
double-word aligned.

Related PRP
Actions:

Set Device Default

name type
hDevice pointer to open RP device handle
defaultcode enumerated default code
value pointer to new default value
valueSize size of default value
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDDeviceGetVersion C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDDeviceGetVersion(PMDDeviceHandle *hDevice,
 PMDuint32 *major,
 PMDuint32 *minor);

Visual Basic
Syntax:

Dim major, minor As UInteger
device.GetVersion(major, minor)

Description: PMDDeviceGetVersion is used to retrieve version information for a PRP device. If hDevice is a
handle to a Magellan attached device then PMD_ERR_NOT_SUPPORTED will be returned, and
the version information not written. hDevice may be null for calls made by C-Motion Engine user
programs needing the version number of the device on which they are running.

Related PRP
Actions:

Get Device Version

name type
hDevice pointer to PMDDeviceHandle
major unsigned version number
minor unsigned version number
D Resource Access Protocol Programmer’s Reference 89

4

90

PMDTaskGetAbortCode C-Motion Engine
C language
syntax:

unsigned PMDTaskGetAbortCode();

Description: PMDTaskGetAbortCode is used to retrieve the code left by a previous call to PMDTaskAbort,
and may be used for communication from one instance of a C-Motion Engine user program to the
next. The abort code is not non-volatile, and does not survive a reset or power cycle. After reading
the abort code is cleared, and subsequent reads will return zero. Zero is also returned if
PMDTaskAbort was not called by the previous program.

PMDTaskGetAbortCode is only available to CME user programs.

Related PRP
Actions:

none
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDDeviceGetTickCount C-Motion Engine Host-Based
C language
syntax:

PMDuint32 PMDDeviceGetTickCount();

Description: PMDDeviceGetTickCount returns the number of milliseconds from the time the C-Motion
Engine from which it is called has been running. The count is maintained with a granularity of 8

milliseconds, and will overflow to zero after 232 milliseconds.

PMDDeviceGetTickCount is only available to CME user programs

Related PRP
Actions:

none
D Resource Access Protocol Programmer’s Reference 91

4

92

PMDMPDeviceOpen C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDMPDeviceOpen(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

Visual Basic
Syntax:

Dim device As New PMDDevice(peripheral,
PMDDeviceType.MotionProcessor)

Description: PMDMPDeviceOpen is used to obtain a handle to a Magellan attached device, for example a non-
CME ION module, or a non-CME prodigy card. A Magellan attached device communicates using
the Magellan protocol, and not PRP. The device argument should point to an uninitialized
PMDDeviceHandle data type, which may not be freed or written to as long as the device handle
is in use.

hPeriph should point to an open peripheral connection to the Magellan attached device.

The device handle obtained using this procedure is useful for opening motion processor axis
handles, using the PMDAxisOpen procedure.

Related PRP
Actions:

Open Periph MotionProcessor

name type
hDevice pointer to uninitialized

PMDDeviceHandle
hPeriph pointer to PMDPeriphHandle
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDMemoryClose C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDMemoryClose(PMDMemoryHandle *hMemory);

Visual Basic
Syntax:

memory.Close()

Description: PMDMemoryClose is used to free any resources used in maintaining a handle to a memory
resource such as dual-ported RAM. After closing the memory used for the PMDMemoryHandle
data type may be freed or re-used.

Related PRP
Actions:

Close Memory

name type
hMemory pointer to open PMDMemoryHandle
D Resource Access Protocol Programmer’s Reference 93

4

94

PMDMemoryOpen C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDMemoryOpen32(PMDMemoryHandle *hMemory,
 PMDDeviceHandle *hDevice,
 PMDDataSize datasize,

 PMDMemoryType memorytype);

Visual Basic
Syntax:

Dim mem As New PMDMemory(RPDevice, PMDDataSize.Size32Bit)

Description: PMDMemoryOpen is used to obtain a handle to a memory resource such as dual-ported RAM on
a Prodigy/CME or non-CME Prodigy card. hDevice specifies the device containing the memory,
and may have been opened using PMDMPDeviceOpen (for non-CME cards), or
PMDRPDeviceOpen (for CME cards). In the case of C-Motion Engine user programs needing to
read or write the local memory, hDevice should be a null pointer.

The width argument indicates the size of the data that are read or written to the memory device. All
currently supported memory devices support only 32 bit access, so width must be
PMD_DataSize_32bit. All accesses to the memory must use addresses dword-aligned, ie divisible
by four, and use buffer lengths that are also divisble by four.

For all current products memorytype is one of:

PMD memoryType DPRAM
PMD memoryType DVRAM

Related PRP
Actions:

Open Device Memory

name type
hMemory pointer to uninitialized

PMDMemoryHandle
hDevice pointer to PMDDeviceHandle
datasize PMDDataType
memorytype PMDMemoryType
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDMemoryRead C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDMemoryRead(PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 index,
 PMDuint32 length);

Visual Basic
Syntax:

Dim offset, length As UInt32
Dim values(0 To MaxLength)
memory.Read(values, offset, length)

Description: PMDMemoryRead is used to read a sequence of bytes from the memory object indicated by the
hMemory argument. The data argument is a pointer to a data buffer for the values read. The offset
argument is the memory address at which to start reading. The length argument is the number of
bytes to read.

Each memory device has a data width, for example memory handles opened with A DATASIZE
OF pmd dATAsIZE 32bIT have a data width of 4 bytes, or 32 words. If the data, offset, or length
arguments are not aligned to the memory data width then a PMD_ERR_ALIGNMENT error code
will be returned. Currently Prodigy/CME supports only dword-addressable dual-ported RAMs,
and word addressable NVRAM.

Related PRP
Actions:

Read Memory Dword

name type
hMemory pointer to open PMDMemoryHandle
data pointer to data read
offset memory byte address
length memory byte length
D Resource Access Protocol Programmer’s Reference 95

4

96

PMDMemoryWrite C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDMemoryWrite(PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

Visual Basic
Syntax:

Dim offset, length As UInt32
Dim values(0 To MaxLength)
memory.Write(values, offset, length)

Description: PMDMemoryWrite is used to write a sequence of consecutive of bytes to the dual-ported RAM
indicated by the ram argument. The data argument is a pointer to the data to write. The offset
argument is the memory address at which to start writing. The length argument is the number of
data units to write depending on the data size.

Each memory device has a data width. For example, memory handles opened with a datasize of
PMD_DataSize_32Bit have a data width of 4 bytes, or 32 words. If the data, offset, or length
arguments are not aligned to the memory data width then a PMD_ERR_ALIGNMENT error code
will be returned. Prodigy/CME supports only dword-addressable dual-ported RAMs and word
addressable NVRAM.

Related PRP
Actions:

Write Memory Dword

name type
ram pointer to open PMDMemoryHandle
data pointer to data to write
offset memory byte address
length number of bytes to write
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDPeriphClose C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphClose(PMDPeriphHandle *hPeriph);

Visual Basic
Syntax:

peripheral.Close()

Description: PMDPeriphClose is used to free resources associated with an open peripheral handle.

The communication channel will be closed, and no input will be accepted on it. Memory used for
the peripheral handle may be freed or used for another purpose.

Related PRP
Actions:

Close Peripheral

name type
hPeriph pointer to open PMDPeriphHandle
D Resource Access Protocol Programmer’s Reference 97

4

98

PMDPeriphOpenCAN C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphOpenCAN(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 addressTX,
 PMDuint32 addressRX,
 PMDuint32 eventRX);

Description: PMDPeriphOpenCAN is used to open a peripheral connection to a device on a CANBus that uses
two or three CAN identifiers for communication, for example a Magellan attached device or a
Prodigy/CME card. hPeriph should point to an uninitialized PMDPeriphHandle data structure.
hDevice should point to an open device handle corresponding to a PRP device, hDevice may be a
null pointer, which means the local device, either the host or, for C-Motion Engine user programs,
the local PRP device.

addressTX is a CAN identifier that will be used for sending outgoing packets. addressRX is a CAN
identifier that will be used to listen for incoming packets. Currently only 11 bit CAN identifiers are
supported.

eventRX is an optional CAN identifier used for receiving asynchronous event notification packets
from a PRP device or a Magellan attached device. If no such event notification is needed then zero
eventRX should be zero.

Related PRP
Actions:

Open Device CAN

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to open device handle
addressTx CAN identifier for transmit
addressRx CAN identifier for receive
eventRX CAN identifier for event notification

receive
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDPeriphOpenCME C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphOpenCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

Description: PMDPeriphOpenCME is used to open a connection to a virtual peripheral using PRP user packets.
User packets may contain data for user application control and monitoring in any format, but are
limited in size to USER_PACKET_LENGTH (250) bytes. User packets are sent as discrete units,
they do not constitute a stream.

User packets are transported in PRP packets, that is, they are “tunneled” through PRP, and are a
very simple way to establish communication between host programs and C-Motion engine user
programs because they do not require opening a separate communication channel, nor
implementing a low-level protocol over it.

PMDPeriphOpenCME is used to open both sides of the user packet channel: On the host side an
opened device handle associated with a PRP device must be passed using the hDevice argument.
On the C-Motion engine side a user program should pass a null pointer as hDevice.

The peripheral handle opened by PMDPeriphOpenCME may be used in the same way as other
peripheral handles, using PMDPeriphSend, PMDPeriphReceive, and PMDPeriphClose.

When considering the timeout parameter for peripheral send and receive commands for user
packets, it is useful to know that the C-Motion Engine can buffer one user packet on the incoming
side, and one on the outgoing side. The timeout period is not determined by when something
actually reads a user packet, but rather by when it is copied into the appropriate buffer. There are
four cases to consider:
1. A host sending user packets to a CME can always send one packet without a timeout, but the

second packet will time out if a CME user program has not read the first packet in the specified
time.

2. A host receiving user packets from a CME will time out if a CME user program has not written
a packet to the outgoing buffer by the specified time.

3. A CME sending user packets to a host can always send one packet without a timeout, but the
second packet will time out if a host program has not read the first packet in the specified time.

4. A CME receiving user packets will time out if a host program has not written a user packet to
the incoming buffer in the specified time.

While it is possible for multiple host processes or multiple hosts to read and write user packets to
the same PRP device, but it is not a good idea. There is no way to determine which host sent a given
packet, nor any way to “unread” or “peek” at an incoming user packet.

Related PRP
Actions:

Open Device CMotionEngine

Send CMotionEngine

Receive CMotionEngine

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to open RP device handle
D Resource Access Protocol Programmer’s Reference 99

4

100

PMDPeriphOpenCOM C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphOpenCOM(PMDPeriphHandle *periph,
 PMDDeviceHandle *device,
 PMDSerialPort port,
 PMDSerialBaud baud,
 PMDSerialParity parity,
 PMDSerialStopBits stopbits);

Visual Basic
Syntax:

Dim periph As New PMDPeripheralCOM(portnum, PMDSerialBaud.baud, _
 PMDSerialParity.parity, PMDSerialStopBits.bits)

Description: PMDPeriphOpenCOM is used to open a peripheral handle representing an open serial line.
hPeriph should point to an uninitialized PMDPeriphHandle data structure. hDevice is a device
handle which should be associated with a PRP device, hDevice may be a null pointer, in which case
it means the local device, either the host or, for a C-Motion Engine user program, the local PRP
device.

port is the serial port to use, one of PMDSerialPort1 or PMDSerialPort2.

baud is the serial port speed to set, one of PMDSerialBaud1200, PMDSerialBaud2400,
PMDSerialBaud9600, PMDSerialBaud19200, PMDSerialBaud57600, PMDSerialBaud115200,
PMDSerialBaud230400, or PMDSerialBaud460800.

parity is the parity to use, one of PMDSerialParityNone, PMDSerialParityOdd, or
PMDSerialParityEven.

stopbits is the number of stopbits to use, either PMDSerialStopBits1 or PMDSerialStopBits2.

Eight data bits are always used.

In order to open a PMD serial protocol multi-drop peripheral, PMDPeriphOpenMultiDrop should
be applied to the peripheral handle opened by PMDPeriphOpenCOM.

Related PRP
Actions:

Open Device COM

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to RP device handle
port enumerated serial port
baud enumerated baud rate
parity enumerated parity
stopbits enumerated number of stop bits
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDPeriphOpenISA C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphOpenISA(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint16 address,
 PMDuint8 eventIRQ,
 PMDDataSize width);

Description: PMDPeriphOpenISA is used to open a peripheral representing a device on the PC-104

ISA bus at a specified base address. hPeriph should point to an uninitialized PMDPeriphHandle,
and hDevice should be a pointer to an open RP device handle, that is, a PRP device. If called from
a C-Motion Engine user program then hDevice may be a null pointer, meaning the local device.

The PMDPeriphReadBytes and PMDPeriphWriteBytes procedures may be used to read or write
to the ISA bus at specified offsets from the base address.

In case the peripheral is connected to a non-CME Prodigy card then eventIRQ may be used to
specify the interrupt used for asynchronous event notification.

The width argument specifies the size of the data that are read or written to the peripheral. Non-
CME Prodigy-ISA cards require 16-bit data access, so width should be PMD_DataSize_16bits
when opening such a device. ISA devices requiring 8-bit access are also supported, and use the value
PMD_DataSize_8bits for width.

All reads or writes to a 16-bit ISA peripheral must be properly aligned, that is, all address values data
lengths must be even.

Related PRP
Actions:

Open Device ISA

name type
hPeriph pointer to uninitialized peripheral handle
hDevice pointer to open RP device handle
address ISA base address
eventIRQ ISA interrupt line
width enumerated data size
D Resource Access Protocol Programmer’s Reference 101

4

102

PMDPeriphOpenMultiDrop C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphOpenMultiDrop(PMDPeriphHandle *periph,
 PMDPeriphHandle *parent,
 unsigned address);

Visual Basic
Syntax:

Dim parent As PMDPeripheralCOM
Dim address As UInt32
Dim periph As New PMDPeripheralMultiDrop(parent, address)

Description: PMDPeriphOpenMultiDrop is used to open a peripheral representing a connection on a serial line
to a device using the PMD multi-drop serial protocol, either a Magellan attached device or a PRP
device. hParent must be a pointer to a previously opened peripheral representing the serial line, and
address is the multi-drop address.

Related PRP
Actions:

Open Peripheral MultiDrop

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hParent pointer to open handle to serial port

peripheral
address 5 bit PMD multi-drop address
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDPeriphOpenPAR C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphOpenPAR(
 PMDPeriphHandle* hPeriph,

PMDDeviceHandle *hDevice,
WORD address,
BYTE EventIRQ,
PMDDataSize datasize);

Description: PMDPeriphOpenPAR is used to open a peripheral handle representing a parallel channel on the
indicated device. The nature of the parallel channel is specific to the device being addressed.
Currently ION/CME supports parallel channels used for digital input and output and for analog
input.

The address argument indicates the specific parallel channel to be opened, and is device-specific.
The datasize argument indicates the data width of the peripheral to be opened, that is, the number
of 8 bit bytes read or written with each operation. Only one data width is normally supported for
each type of parallel channel. The EventIRQ argument indicates the interrupt used for parallel
communication, and is device-specific.

Currently only the ION/CME digital drive supports parallel peripherals, which are used for digital
input/output and for analog input. Consult the ION/CME Digital Drive User’s Manual for details.

Related PRP
Actions:

Open Device PAR

name type
hPeriph pointer to uninitialized peripheral

handle
hDevice pointer to a valid device handle
address 16 bit address indicating peripheral

channel to open
EventIRQ Device-specific interrupt channel
datasize Data width of the peripheral in bytes
D Resource Access Protocol Programmer’s Reference 103

4

104

PMDPeriphOpenPCI Host-Based
C language
syntax:

PMDresult PMDPeriphOpenPCI(PMDPeriphHandle *hPeriph,
 int cardNo

Visual Basic
Syntax:

Dim boardnum As UInt32
Dim periph As New PMDPeripheralPCI(boardnum)

Description: PMDPeriphOpenPCI is used on a host PC to open a peripheral connection to a Prodigy/CME-
PCI card installed in the host computer. Because Prodigy/CME-PCI does not support bus
mastering there is no way of opening an outgoing PCI bus peripheral on the Prodigy/CME.
cardNo is a small integer denoting the particular Prodigy/CME card to connect to. If only one
Prodigy/CME card is present, then cardNo is always zero. Mutiple cards are numbered sequentially
in an order that must be determined by experiment.

Related PRP
Actions:

none, this procedure is supported only on a PC host.

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
cardNo integer
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDPeriphOpenTCP C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphOpenTCP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 port);

Visual Basic
Syntax:

Dim address As System.Net.IPAddress
Dim portnum, timeout As UInt32
Dim periph As New PMDPeripheralTCP(address, portnum, timeout)

Description: PMDPeriphOpenTCP is used to open a TCP/IP peripheral on the PRP device indicated by
hDevice. If hDevice is a null pointer then the local device, either the host or the PRP device on
which a CME user program is running.

If IPAddress is nonzero then it is the IP address of a remote Ethernet device to which a connection
should be opened. If IPAddress is nonzero then the device will listen on the indicated TCP port
for incoming connections from any device, handle one connection at a time, and resume listening
after a remote device closes the connection. In either case, a connection may be closed using
PMDPeriphClose.

IPAddress must be numeric, PRP devices do not support any kind of name service. An IP address
in the familiar dotted quad notation A.B.C.D is equivalent to the 32 bit number (A<<24) +
(B<<16) + (C<<8) + D, this conversion may be done using the macro PMD_IP4_ADDR, for
example the numeric value of the IP address 192.168.13.42 could be obtained by writing
PMD_IP4_ADDR(192, 168, 13, 42).

port is the TCP port number to use for sending or receiving. TCP ports are divided into three
ranges:
1. The well-known ports from 0 to 1023 are used for standard services, which are not likely to be

hosted by user C-Motion Engine applications.
2. The registered ports from 1024 to 49151 are used ad hoc, and are most likely to be used for user

motion control applications,

3. The dynamic ports from 49152 to 65535 are used for temporary applications, and may be use-
ful for user applications that dynamically assign UDP ports.

Related PRP
Actions:

Open Device TCP

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to open PMDDeviceHandle
IPAddress 32 bit IP address
port 16 bit TCP/IP port
D Resource Access Protocol Programmer’s Reference 105

4

106

PMDPeriphOpenUDP C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphOpenUDP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 port);

Description: PMDPeriphOpenUDP is used to open a UDP/IP peripheral on the PRP device indicated by
hDevice. If hDevice is a null pointer then the local device, either the host or the PRP device on
which a CME user program is running.

If IPAddress is nonzero then it is the IP address of a remote Ethernet device to which packets will
be sent; the peripheral will be write-only. If IPAddress is zero then a UDP port will be opened for
listening; the peripheral will be read-only. IPAddress must be numeric, PRP devices do not support
any kind of name service. An IP address in the familiar dotted quad notation A.B.C.D is equivalent
to the 32 bit number (A<<24) + (B<<16) + (C<<8) + D, this conversion may be done using the
macro PMD_IP4_ADDR, for example the numeric value of the IP address 192.168.13.42 could be
obtained by writing PMD_IP4_ADDR(192, 168, 13, 42).

port is the UDP port number to use for sending or receiving. UDP ports are divided into three
ranges:
1. The well-known ports from 0 to 1023 are used for standard services, which are not likely to be

hosted by user C-Motion Engine applications.
2. The registered ports from 1024 to 49151 are used ad hoc, and are most likely to be used for user

motion control applications,

3. The dynamic ports from 49152 to 65535 are used for temporary applications, and may be use-
ful for user applications that dynamically assign UDP ports.

Related PRP
Actions:

Open Device UDP

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to open PMDDeviceHandle
IPAddress 32 bit IP address
port 16 bit UDP port
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDPeriphRead C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphRead (PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

Visual Basic
Syntax:

Dim data16(0 To MaxLength) As UInt16
Dim data8(0 To MaxLength) As Byte
Dim offset, length As UInt32
periph.read(data16, offset, length)
periph.read(data8, offset, length)

Description: PMDPeriphRead is used to read a stream of bytes from a peripheral with a specified base address,
specifically PC-104 ISA bus and PCI bus peripherals. hPeriph should point to an open handle to
such a peripheral, for peripherals without an address concept an error code of
PMD_ERR_NOT_SUPPORTED will be returned.

data is a pointer to a buffer for incoming data, offset is an increment to add to the base address to
give the address to read from, and length is the number of bytes to read.

Related PRP
Actions:

Read Periph Byte

name type
hPeriph pointer to open PMDPeriphHandle
data buffer for incoming data
offset byte offset from base address
length number of data units to read
D Resource Access Protocol Programmer’s Reference 107

4

108

PMDPeriphReceive C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphReceive(PMDPeriphHandle *periph,
 void *buffer,
 PMDuint32 *nReceived,
 PMDuint32 nExpected,
 PMDuint32 timeout);

Visual Basic
Syntax:

Dim data8(0 To MaxLength) As Byte
Dim nReceived, nExpected, timeout As UInt32
periph.receive(data8, nReceived, nExpected, timeout)

Description: PMDPeriphReceive is used to read bytes from a peripheral. hPeriph should be a pointer to an open
peripheral handle, data a pointer to a memory buffer for incoming data, and nExpected the
maximum number of bytes to accept, typically the size of the data buffer.

For peripherals that receive data in packets, such as CANBus, TCP/IP, and UDP/IP,
PMDPeriphReceive will return after receiving one packet, writing to the data buffer, and writing
the actual number of bytes received to *nReceived. Note that the number of bytes received may be
greater than nExpected, but at most nExpected bytes will be written in the buffer.

For peripherals that do not receive data in packets, such as serial ports, PMDPeriphReceive will
return after receiving exactly nExpected bytes.

PMDPeriphReceive will return PMD_RP_Timeout if timeout milliseconds elapsed waiting for
data. Some ports may timeout before receiving nExpected bytes. The nReceived parameter will
contain the number of bytes received before the timeout. A timeout value of
PMD_WAITFOREVER (0xffff) disables the time out.

If the peripheral connection has been closed by some external action, for example a TCP
connection that has been closed by a peer, then PMD_ERR_NotConnected will be returned. After
such an error the peripheral handle must be closed using PMDPeriphClose. In the case of a TCP
connection, after closing the unconnected peripheral a new peripheral with the same TCP port may
be opened using PMDPeriphOpenTCP.

 The following example shows how to implement a TCP server that handles a single connection at
a time, and reads data until the connection is closed by the peer.

 PMDresult status;
 PMDPeriphHandle hPeriphTCP;
 PMDuint32 nReceived;
 unsigned char buffer[PACKETSIZE];
 int open;

 while (!0) {
 status = PMDPeriphOpenTCP(&hPeriphTCP, NULL, 0, TCPPORT, timeout);
 open = 1;

name type
hPeriph pointer to open PMDPeriphHandle
data pointer to incoming data buffer
nReceived pointer to actual bytes received
nExpected maximum bytes to receive
timeout milliseconds, less than 0xffff
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDPeriphReceive (cont.) C-Motion Engine Host-Based
 while (open) {
 status = PMDPeriphReceive(&hPeriphTCP, buffer, &nReceived, sizeof(buffer),
timeout);
 // As a simple example we just read data. For a more complicated protocol each send and
 // receive operation should include a check of the return value as shown.
 switch (status) {
 default:
 Handle the error;
 case PMD_ERR_NotConnected:
 // The peripheral handle must be closed. It will be re-opened in the outer loop.
 PMDPeriphClose(&hPeriphTCP);
 open = 0;
 break;
 case PMD_ERR_OK:
 Do something useful with the data;
 break;
 }
 }
 }

Related PRP
Actions:

Receive Peripheral
D Resource Access Protocol Programmer’s Reference 109

4

110

PMDPeriphSend C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 nCount,
 PMDuint32 timeout);

Visual Basic
Syntax:

Dim data8(0 To MaxLength) As Byte
Dim nCount, timeout As UInt32
periph.receive(data8, nCount, timeout)

Description: PMDPeriphSend is used to send bytes to a peripheral, indicated by the hPeriph argument.

nCount bytes are sent from the buffer data. If the data may not be sent in timeout milliseconds
then PMDPeriphSend will stop trying and return PMD_ERR_Timeout. A timeout value of
PMD_WAITFOREVER (0xffff) means never stop trying.

If the peripheral connection has been closed by some external action, for example a TCP
connection that has been closed by a peer, then PMD_ERR_NotConnected will be returned. After
such an error the peripheral handle must be closed using PMDPeriphClose. In the case of a TCP
connection, after closing the unconnected peripheral a new peripheral with the same TCP port may
be opened using PMDPeriphOpenTCP. See PMDPeriphReceive (p. 107) for example code.

Related PRP
Actions:

Send Peripheral

name type
hPeriph pointer to open PMDPeriphHandle
data pointer to data to send
nCount number of bytes to send
timeout milliseconds to wait, less than 0xffff
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDPeriphWrite C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDPeriphWrite(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

Visual Basic
Syntax:

Dim data16(0 To MaxLength) As UInt16
Dim data8(0 To MaxLength) As Byte
Dim offset, length As UInt32
periph.read(data16, offset, length)
periph.read(data8, offset, length)

Description: PMDPeriphWrite is used to write a stream of bytes to a peripheral with a specified base address,
specifically PC-104 ISA bus and PCI bus peripherals. hPeriph should point to an open handle to
such a peripheral, for peripherals without an address concept an error code of
PMD_ERR_NOT_SUPPORTED will be returned.

data is a pointer to a buffer containing the data to write, offset is an increment to add to the base
address to give the address for writing, and length is the number of bytes to write.

Related PRP
Actions:

Write Periph Byte

name type
hPeriph pointer to an open peripheral handle
data pointer to data to write
offset offset from base address
length number of data units to write
D Resource Access Protocol Programmer’s Reference 111

4

112

PMDIOOpen C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDIOOpen(PMDIOHandle *hIO,
 PMDDeviceHandle *hDevice,
 PMDIOType iotype);

VisuaDescriptio
n:

PMDIOOpen is used to obtain a handle to an IO resource on an ION/CME module. hDevice
specifies the device containing the IO resource. In the case of C-Motion Engine user programs
needing to read or write to the local IO, hDevice should be null.

For all current products iotype can be of:

PMDIOType DIO = 0
PMDIOType AI = 1

name type
hIO pointer to uninitialized

PMDIOHandle
hDevise pointer to PMDDeviceHandle
iotype iotype identifier
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDIORead C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDIORead(PMDIO *IO,
 PMDuint16 *data);

VisuaDescriptio
n:

PMDIORead is used is used to read the value at an IO port indicated by the hIO argument. The
data argument is a pointer to a 16-bit value to receive value read.

Related PRP
Actions:

Read IO Word

name type
hIO pointer to an open PMDIOHandle
data pointer to data
D Resource Access Protocol Programmer’s Reference 113

4

114

PMDIOWrite C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDIOWrite(PMDIO *hIO,
 PMDuint16 data,

PMDuint16 mask);

VisuaDescriptio
n:

PMDIOWrite is used to write a value to a general purpose IO port (digital or analog). If the IO
port type being addressed is a digital IO port, the mask field is used to specify which bits will be
affected by the write.

Related PRP
Actions:

Write IO Word

name type
hIO pointer to an open PMDIOHandle
data 16-bit data to be written
mask digital IO mask
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDprintf C-Motion Engine Host-Based
Arguments:

C language
syntax:

int PMDprintf(const char *fmt, …);

Description: PMDprintf is the primary procedure used for console output, a feature used for progress reporting
during development and debugging. The console may be attached to any of the available
communication devices at startup using the default settings Default_DebugIntfType,
Default_DebugIntfAddr, and Default_DebugIntfPort. The console may be changed at run time to
a specified peripheral by using the PRP action Set Console. Pro-Motion can also be used
conveniently to set the current or default console.

The arguments to PMDprintf are the same as to the C standard library printf, and the return value
is the number of characters printed. Because there is only one console and no file system there is
no equivalent to fprintf. In order to send formatted data through a peripheral sprintf should be used
to format to a user-supplied buffer, and the buffer sent.

PMDprintf does not correctly format floating point arguments. In order to print floating point
numbers it is necessary to format them using sprintf, and then to print the formatted string using
PMDprintf or PMDputs.

Related PRP
Actions:

Set Console

Set Device Default Default_DebugIntfType

Set Device Default Default_DebugIntfAddr

Set Device Default Default_DebugIntfPort

name type
fmt string
… arguments to format
D Resource Access Protocol Programmer’s Reference 115

4

116

PMDputch C-Motion Engine Host-Based
Arguments:

C language
syntax:

void PMD_putch(int ch);

Description: PMDputch is used to print a single character to the console. See also PMDprintf (p. 111) for more
description of the console.

Related PRP
Actions:

Set Console

Set Device Default Default_DebugIntfType

Set Device Default Default_DebugIntfAddr

Set Device Default Default_DebugIntfPort

name type
ch 8 bit integer
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDputs C-Motion Engine Host-Based
Arguments:

C language
syntax:

void PMDputs(const char *str);

Description: PMDputs is used to print a constant string to the console. See also PMDprintf (p. 111) for more
description of the console.

Related PRP
Actions:

Set Console

Set Device Default Default_DebugIntfType

Set Device Default Default_DebugIntfAddr

Set Device Default Default_DebugIntfPort

name type
str string
D Resource Access Protocol Programmer’s Reference 117

4

118

PMDRPDeviceOpen C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDRPDeviceOpen(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

Visual Basic
Syntax:

Dim dev As New PMDDevice(periph, PMDDeviceType.ResourceProtocol)

Description: PMDRPDeviceOpen is used to open a handle to a device that communicates using PRP, that is, a
Prodigy/CME card or PRP ION module. hPeriph should be a handle to an open peripheral that is
physically connected to a PRP device.

The device handle opened by this procedure may be used for opening motion processor axes, (see
PMDAxisOpen (p. 81)), or dual-ported RAM devices (see PMDMemoryOpen32 (p. 94)),
peripherals on the device (see PMDPeriphOpenCOM (p. 100), PMDPeriphOpenTCP (p. 104),
PMDPeriphOpenUDP (p. 105), PMDPeriphOpenISA (p. 101), and PMDPeriphOpenCAN (p.

98)) .

The device handle is also used to access the C-Motion Engine on the device, for example using
PMDCMETaskStart or PMDCMETaskStop.

Related PRP
Actions:

Open Peripheral Device

name type
hDevice pointer to uninitialized

PMDDeviceHandle
hPeriph pointer to open PMDPeriphHandle
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDTaskAbort C-Motion Engine Host-Based
Arguments:

C language
syntax:

void PMDTaskAbort(int UserAbortCode);

Description: PMDTaskAbort is used to halt user code execution in case of a fatal error, it does not return. The
argument is a nonzero code that can be used to communicate the cause of failure to the next
invocation of the user program, and should be checked using PMDTaskGetAbortCode at the
beginning of the user program.

PMDTaskAbort does not perform any cleanup actions, nor does it perform a reset. Any cleanup
required to put the device in a safe state must be done by the user program before calling
PMDTaskAbort.

Related PRP
Actions:

none. This procedure may be called only from a C-Motion Engine user program.

name type
UserAbortCode 8 bit integer
D Resource Access Protocol Programmer’s Reference 119

4

120

PMDTaskWait C-Motion Engine Host-Based
Arguments:

C language
syntax:

void PMDTaskWait(PMDuint32 msec);

Description: The PMDTaskWait procedure is used to delay execution of a C-Motion Engine user program for
a specified number of milliseconds. The delay is relative to the time the procedure is called, and has
a granularity of 8 milliseconds.

For a way to arrange a periodic task, see PMDTaskWaitUntil (p. 118).

Related PRP
Actions:

none

name type
msec milliseconds
PMD Resource Access Protocol Programmer’s Reference

4

PM

PMDTaskWaitForEvent C-Motion Engine Host-Based
Arguments:

C language
syntax:

PMDresult PMDWaitForEvent(PMDDeviceHandle *hDevice,
 PMDEvent *hEvent,
 PMDuint32 timeout);

Visual Basic
Syntax:

Dim EventStruct As PMDEvent
Dim timeout As UInt32
device.WaitForEvent(EventStruct, timeout)
Dim axis As PMDAxis
Dim EventMask As UInt16
axis = EventStruct.axis
EventMask = EventStruct.EventMask

Description: PMDWaitForEvent is used to check for any reported asynchronous events raised by the device
indicated by hDevice. The device may be a Magellan attached device, a PRP device, or, for C-
Motion Engine user programs, the null pointer to indicate the local device.

If an asynchronous event notification is received for any of the Magellan axes of the motion
processor attached to the device then PMD_ERR_RP_EVENT will be returned and the axis and
event status register written to members of the hEvent struct. This struct has at least these
members:
PMDAxis axis;
PMDuint16 eventStatus;

which indicate the axis and events responsible for the notification. If no event notifications have
been received within timeout milliseconds, then zero (success) is returned, and hEvent is not
written. A timeout value of PMD_WAITFOREVER (0xffff) disables the time out.

Asynchronous event notification is an optional Magellan feature described in the Magellan Motion
Processor User’s Guide. The conditions causing an event notification are programmable, using
commands described in the Magellan Motion Processor Programmer’s Reference. Not all peripheral types
support event notification, in particular serial communication does not. All peripherals in the chain
used to communicate with a given motion processor must have been opened with the appropriate
event channel data in order for event notification to work.

Related PRP
Actions:

See the description of the Event Notification Packet, section 2.4.3.

name type
hDevice pointer to PMDDeviceHandle
hEvent pointer to event struct
timeout milliseconds, up to 0xfffe
D Resource Access Protocol Programmer’s Reference 121

4

PM

PMDTaskWaitUntil C-Motion Engine Host-Based
Arguments:

C language
syntax:

void PMDTaskWaitUntil(PMDuint32 *pPreviousTime, PMDuint32 incrms);

Description: The PMDTaskWaitUntil procedure is used to wait until a particular specified time and may be used
to arrange a periodic task loop. The argument pPreviousTime should point to a timer count
previously returned by PMDDeviceGetTickCount or modified by PMDTaskWaitUntil.
PMDTaskWaitUntil will return after the timer tick computed by adding incrms to the tick value in
*pPreviousTime. The value in *pPreviousTime will be updated to the current time.

If the time computed by adding incrms to *pPreviousTime is in the past then

PMDTaskWaitUntil will return immediately and will not update *pPreviousTime. If this case is
likely, it must be checked explicitly using PMDDeviceGetTickCount.

For example:

PMDuint32 lastTime, thisTime;
PMDuint32 incrTime = 32;

lastTime = PMDDeviceGetTickCount();
while (!0) {

 Do some useful job

 thisTime = PMDDeviceGetTickCount();
 if ((lastTime + incrTime < thisTime) &&
 (lastTime + incrTime > lastTime)) {
 Report a time budget overrun
 lastTime = thisTime;
 }
 PMDTaskWaitUntil(*lastTime, incrTime); // wait for up to 32 milliseconds

Related PRP
Actions:

none

name type
pPreviousTime pointer to time in milliseconds
incrms increment in milliseconds
D Resource Access Protocol Programmer’s Reference 122

5

5.C-Motion Engine
The C-Motion Engine is a special purpose computer included in the Prodigy/CME card and the ION/CME digital
drive, and connected by a high speed internal bus to the on-card Magellan Motion Processor, dual-ported RAM, and
various communication devices. The firmware libraries required for motion control and a framework for application
support are already included in the CME device, only the logic specific to a particular application need be programmed
into the C-Motion Engine, making development a much quicker task than it would be for a “ground-up” embedded
application.

Most of the instruction cycles in the microprocessor hosting the C-Motion Engine are normally available for running
the user program, but processing of messages sent and received on communication peripherals is done by the same
processor. Heavy message traffic, particularly heavy Ethernet traffic, may therefore reduce the time available for running
the user program.

5.1 C-Motion Libraries

The C-Motion Engine is programmed in ANSI C89, and supports the applicable parts of the standard C library and the
math library. Standard I/O is limited to the pre-opened “stderr” and “stdout” file handles, which are connected to the
console, because there are no available devices supporting files. Floating point is available but is implemented in
software. There is a significant performance penalty compared to integer arithmetic, so fixed point computation should
be considered in applications for which speed is important.

Dynamic memory allocation is supported using “malloc” and “free.” Because the dynamic heap is of limited size and
is unavoidably subject to fragmentation it is suggested that dynamic allocation be used sparingly, preferably only during
initialization. The heap in current CME devices is approximately 7 kilobytes.

5.2 Procedures Specific to the C-Motion
Engine

Most of the Procedures used for controlling aCME device use identical calling sequences whether executed on the host
or the C-Motion Engine, making it easy to move parts of an application from the host to the C-Motion engine, or vice-
versa. See Section 4.5, PMD Library Procedures, for the internals of the data structures used, and other details of
implementation are of course different. Procedures specific to the C-Motion engine.

C language procedures dealing with an entire PRP device, for example to open a handle to a card resource, use a device
handle, a pointer to the PMDDevice type. For host-based programs this type must be initialized by a call to
PMDRPDeviceOpen to establish a connection to a PRP device over an open peripheral connection. For C-Motion
engine user programs accessing the local device, a null pointer should be passed as the device handle. An example is
shown below:

/* Host-based program */
PMDDeviceHandle dev; /* Statically allocate space for a PRP device handle. */
PMDAxisHandle axis1; /* Allocate space for a handle to a Magellan axis. */
PMDPeriphHandle periph; /* Allocate space for a handle to a peripheral connection. */
PMD Resource Access Protocol Programmer’s Reference 123

C-Motion Engine5
int main(int argc, char **argv)
{
 PMDresult result;
 PMDDeviceHandle *hdev = &dev;

 /* Open a TCP/IP peripheral, the second argument is the device handle, which is
 zero because the peripheral connection is to the host. */
result = PMDPeriphOpenTCP(&periph, 0, IP_ADDRESS, TCP_PORT, 0);
 if (result) { Handle the error }

 /* Establish a connection to a PRP device over the opened peripheral. */
result = PMDRPDeviceOpen(hdev, &periph);
 if (result) { Handle the error }

result = PMDAxisOpen(&axis1, hdev, PMDAxis1);
 if (result) { Handle the error }

/* Now do something useful with the Magellan axis just opened. */
 …
}

/* ---*/
/* C-Motion Engine program */
PMDDeviceHandle dev; /* Statically allocate space for a Prodigy/CME device handle. */
PMDAxisHandle axis1; /* Allocate space for a handle to a Magellan axis. */

USER_CODE_TASK(myTask)
{
 PMDresult result;
 PMDDeviceHandle *hdev = 0; /* Use a null pointer for the local device handle. */

 /* Open a handle to a Magellan axis on the local device. */
result = PMDAxisOpen(&axis1, hdev, PMDAxis1);
 if (result) { Handle the error }

/* Now do something useful with the Magellan axis just opened. */
 …
}

5.3 C-Motion Engine Programming

In many ways the C-Motion engine environment is more restrictive than a PC host environment: code size, data size,
and stack size are all more limited (see the User’s Guide for your product). The processor running the C-Motion
Engine is slower than a typical PC processor, but because of the lack of competing processes it can be much more
predictable and quicker to respond.

The programming model of the C-Motion Engine has been deliberately kept simple. A C-Motion Engine user
program has a single thread of control, and must not exit, except for fatal error processing using the PMDTaskAbort
124 PMD Resource Access Protocol Programmer’s Reference

C-Motion Engine 5
procedure. There is no support for user interrupt handling, multithreading, or other asynchronous processing, so user
programs are generally structured as event loops that poll for every type of event that they must handle.

Typically the heart of a user program is a state machine, which, depending on the current state, initiates particular
actions and checks for specific input in order to determine the next state. The following provides illustrates a typical
example, a function that handles one state transition, and returns the next state.

int nextState(PMDPeriphHandle *hCmdPeriph, enum myStates state)
{
 PMDResult result;
 PMDuint32 n;

 if (General error condition)
 return STATE_ERROR;

 switch (state) {
 default:
 return STATE_ERROR; /* Should not happen. */

 case STATE_WAIT_FOR_COMMAND:
 result = PMDPeriphReceive(hCmdPeriph, buf, &n, sizeof(buf), 0);
 if (0 == result) {
 /* We got a message, parse it and return the next state. What parseCommand does depends
 on the command language we’re using. */
 return parseCommand(buf, n);
 }
 else if (PMD_ERR_RP_Timeout == result) {
 /* No message, keep waiting. */
 return state;
 }
 else {
 /* We got an error, report it and move on. */
 return state;
 }

 case STATE_EXTEND_ARM_0:
 Start step 1
 return STATE_EXTEND_ARM_1:

 case STATE_EXTEND_ARM_1:
 if (Step 1 done) {
 Start step 2;
 return STATE_EXTEND_ARM_2;
 }
 else
 return state;

 case STATE_EXTEND_ARM_2:
 if (Step 2 done)
 return STATE_WAIT_FOR_COMMAND;
PMD Resource Access Protocol Programmer’s Reference 125

C-Motion Engine5
 else
 return state;

 case ...

 }
}

In practice nextState would be called in a non-terminating loop. Exactly how this is done depends partly on the time
constraints of the user task. One approach is just to run as fast as possible:

USER_CODE_TASK(myTask)
{
 enum myState state = STATE_WAIT_FOR_COMMAND;

 Initialization code ...;

 while (I) {
 state = nextState(state);
 }
}

Another approach is to schedule the state transitions at a regular interval, which has the advantage of allowing one to
find out during testing and debugging that the expected time budget has been exceeded:

USER_CODE_TASK(myTask)
{
 enum myState state = STATE_WAIT_FOR_COMMAND;
 PMDresult result;
 PMDuint32 lastTime, thisTime;
 PMDuint32 incrTime = 50; /* Allow 50 milliseconds for each state transition. */

 Initialization code ...;

 lastTime = PMDGetTickCount();
 while (I) {
 state = nextState(state);
 thisTime = PMDDeviceGetTickCount();
 if ((lastTime + incrTime < thisTime) &&
 (lastTime + incrTime > lastTime)) {

 Report time budget exceeded;

 lastTime = thisTime;
 }
 PMDTaskWaitUntil(&lastTime, incrTime);
 }
}

126 PMD Resource Access Protocol Programmer’s Reference

C-Motion Engine 5
5.4 The Console

The C-Motion Engine console is a primary tool for reporting progress and error messages during development. By
default the console is attached to serial port 2, but it may be redirected to a UDP/IP port or disabled by redirecting it
to the null peripheral. The most convenient way of doing this during development is by using Pro-Motion, as
described in the Pro-Motion User’s Guide. PMDprintf, PMDputs, and PMDputch may be used to send formatted
messages to the console. See Section 4.5, PMD Library Procedures, for procedure documentation.

5.5 User Packets

User packets are a convenient method of encapsulating arbitrary data in the control stream used by PMD procedures
for communication from the host to a CME device. User packets are likely to be most useful for prototypes
applications, but if performance requirements are modest they may be useful for deployed applications.

Each end of the user packet stream is represented by a peripheral handle, obtained using the PMDPeriphOpenCME
procedure (see Section 4.5, PMD Library Procedures,). This procedure is available both on the host and the C-Motion
Engine, and in each case returns one end of the stream. A host program might send application commands as user
packets in any desired format, and the C-Motion Engine user program could reply with user packets representing
status information.

It is important to remember that user packets are delivered as discrete packets, with a maximum size of 250 bytes, and
that only one incoming and one outgoing user packet may be buffered in the C-Motion Engine at any time – if several
user packets are sent without waiting for receipt then all but the first may be overwritten.

5.6 Exceptions

In case of an unrecoverable error a C-Motion user program may call the PMDTaskAbort procedure, which will result
in the user program exiting. The user program must leave the CME device and any attached hardware in a safe state
before calling this procedure. The user program may be restarted using Pro-Motion, and may, during startup, check
for an error code left by PMDTaskAbort using the PMDTaskGetAbortCode procedure. The error code is not non-
volatile, it does not survive a reset or power cycle.

An error in a C-Motion user program may cause a processor exception, for example by reading or writing from an
invalid address, or attempting to execute an invalid instruction (typically because of stack corruption or an invalid
function pointer). After an exception the microprocessor hosting the C-Motion Engine will be reset by the system
watchdog, and execution of the user program will be suppressed regardless of the value of the
DefaultAutoStartMode device default (see Set Device ValueDefault in Section 3.3, PRP Actions and Sub-Actions,
for more information).

When a CME device restarts after a system watchdog reset, information on any previous exception will be printed to
the console, including register values and stack contents. With the aid of the program memory map, this may be useful
in debugging the exception.
PMD Resource Access Protocol Programmer’s Reference 127

C-Motion Engine5
This page intentionally left blank.
128 PMD Resource Access Protocol Programmer’s Reference

6

6.C-Motion
C-Motion is the PMD library for control of Magellan Motion Processors, and is documented in the Magellan Motion
Processor Programmer’s Command Reference. A version of C-Motion is provided for controlling the motion processor included
in a CME device from a host computer. There is also a C-Motion library with the same callable procedures that runs
in the C-Motion Engine.

6.1 C-Motion Versions

To provide more efficient compiled code for the environments in which different C-Motion-based programs are likely
to be used, two separate implementations of C-Motion are provided:

• Version 4.x, for host programs that communicate with PRP devices, and for C-Motion Engine programs.

• Version 3.x, for all other PMD Magellan products, including non-PRP ION modules, non-CME Prodigy
cards, and Magellan Motion Processors.

Both of these C-Motion versions share the same calling sequences for all Magellan commands, however they may not
be mixed in the same program, and they do not share the same mechanisms for opening a connection to a Motion
Processor, discussed for Version 4.x in section 5.2 Axis Handles.

C-Motion 3.x requires the communication interface (PCI, ISA, serial, or CAN) to be specified at compile time. This
allows a smaller program, and, in the case of a port to a microprocessor host, means that code for interfaces that are not
used need not be ported. C-Motion 3.x uses only the Magellan protocols, and does not support PRP.

C-Motion 4.x allows the communications interface (PCI, TCP, serial, or CAN) to be specified at run-time, and supports
multiple connections using different interfaces at the same time. A larger and more complex library is therefore required.
C-Motion 4.x supports both the Magellan protocols, which are used to communicate with Magellan attached Motion
Processors, and also PRP, which is used to communicate with Prodigy/CME cards and ION/CME and ION/D digital
drives. A port of C-Motion 4.x to a microprocessor host could certainly omit some interfaces, but source code changes
in various parts of the library would be required.

6.2 Axis Handles

All C-Motion procedures operate on an axis handle, which represents a single motor control axis of a motion processor.
C-Motion axis handles are objects of type PMDAxisHandle, they should be allocated by the caller of the initialization
procedure, and must not be overwritten until closed.

Axis handles may be initialized in several ways, depending on the kind of motion processor with which they are
associated:

1 A “Magellan attached” device, for example a non-PRP ION or non-CME prodigy card, accessed either
from a host or from a C-Motion Engine: In this case a peripheral connected to the Magellan is opened, a
device handle initializes using the PMDMPDeviceOpen procedure and the PMDAxisOpen procedure is
used to initialize an axis handle.
PMD Resource Access Protocol Programmer’s Reference 129

C-Motion6
2 A PRP device motion processor, accessed from a host PC. In this case a peripheral connected to a PRP
device must be opened, a device handle initialized using the PMDRPDeviceOpen procedure, and an axis
handle initialized using the PMDAxisOpen procedure.

3 A PRP device motion processor, accessed from the C-Motion engine of the same device. In this case
the PMDAxisOpen call is used with a null pointer as the device argument.

The following code examples illustrate the three options:

/* Case 1: Magellan attached device. */

void testAxis(void)
{
 PMDPeriphHandle periph;
 PMDDeviceHandle device;
 PMDAxisHandle axis1;
 PMDresult result;

 /*
 Open a peripheral connection to a Magellan processor connected
 to a CAN bus. CAN_TX and CAN_RX are CAN identifiers used for sending
 commands to and receiving responses from the processor, CAN_EVENT is a CAN
 identifier used for receiving asynchronous event notification.

 The device argument is NULL, because no remote device is used.
 */
 result = PMDPeriphOpenCAN(&periph, 0, CAN_TX, CAN_RX, CAN_EVENT);

 result = PMDMPDeviceOpen(&device, &periph);

 result = PMDAxisOpen(&axis1, &device, PMDAxis1);

 /* An example operation - soft reset the motion processor. */
 result = PMDReset(&axis1);

 /*
 Because the handles are allocated on the stack they
 closed before returning.
 */
 result = PMDAxisClose(&axis1);
 result = PMDDeviceClose(&device);
 result = PMDPeriphClose(&periph);
}

/* Case 2: External PRP device Magellan motion processor. */

void testAxis(void)
{
 PMDDeviceHandle dev;
 PMDPeriphHandle periph;
 PMDAxisHandle axis1;
130 PMD Resource Access Protocol Programmer’s Reference

C-Motion 6
 PMDresult result;

 /*
 Open a peripheral connection to a PRP device using TCP/IP.
 IP_ADDRESS is the IP address of the PRP device, CMD_PORT
 is the TCP port used for sending commands to and
 receiving responses from the card, EVENT_PORT is the TCP port
 used for receiving asynchronous events.

 */
 result = PMDPeriphOpenTCP(&periph, 0, IP_ADDRESS, CMD_PORT, EVENT_PORT);

 /* Open a connection to the device on the peripheral. */
 result = PMDMPDeviceOpen(&dev, &periph);

 /* Now open a connection to the motion processor on the device. */
 result = PMDAxisOpen(&axis1, &dev, PMDAxis1);

 /* An example operation - soft reset the motion processor. */
 result = PMDReset(&axis1);

 /*
 Because the handles are allocated on the stack they
 closed before returning.
 */
 result = PMDAxisClose(&axis1);
 result = PMDDeviceClose(&dev);
 result = PMDPeriphClose(&periph);
}

/* Case 3: PRP device Magellan motion processor accessed from the CME. */

void testAxis(void)
{
 PMDAxisHandle axis1;
 PMDresult result;

 /* This is the simplest case: pass NULL for the device argument to indicate
 the local device. */
 result = PMDAxisOpen(&axis1, 0, PMDAxis1);

 /* An example operation - soft reset the motion processor. */
 result = PMDReset(&axis1);

 /*
 Because the handles are allocated on the stack they
 are closed before returning.
 */
 result = PMDAxisClose(&axis1);
PMD Resource Access Protocol Programmer’s Reference 131

C-Motion6
This page intentionally left blank.

}

132 PMD Resource Access Protocol Programmer’s Reference

7

7.VB-Motion
VB-Motion is the interface from Microsoft Visual Basic .NET to the PMD C-Motion library for control of Magellan
Motion Processors, which is documented in the Magellan Motion Processor Programmer’s Command Reference. The Visual Basic
interface documented in that manual is similar to but not identical to that used for PRP devices. Basic language
programming is supported only for Microsoft Windows hosts, C-Motion Engine programming must be done in the C
language.

There are two parts to the Visual Basic interface code:

1 C-Motion.dll is a dynamically loadable library of all documented procedures in the PMD host libraries, including
all C-Motion procedures.

2 PMDLibrary.vb is Visual Basic source code containing definitions and declarations for DLL procedures,
enumerated types, and data structures supporting the use of C-Motion.dll from Visual Basic. PMDLibrary.vb
should be included in any Visual Basic project for PRP device control.

Both debug and release versions of C-Motion.dll are provided in directories CMESDK\HostCode\Debug and
CMESDK\HostCode\Release, respectively. The library input file C-Motion.lib is also provided so that C-Motion.dll may
be used with C/C++ language programs. When compiling C/C++ programs to be linked against the DLL the
preprocessor symbol PMD_IMPORTS must be defined.

C-Motion.dll must be in the executable path when using it, either from a C or a Visual Basic program. Frequently the
easiest and safest way of doing this is to put it in the same directory as the executable file.

PMDLibrary.vb is located in the directory CMESDK\HostCode\VisualBasic.

Please note that the version of VB-Motion documented in the Magellan Motion Processor Programmer’s Command Reference,
while similar in spirit to the one described here, is not the same. In particular the class structure and the method of
instantiating an axis object is different, and Sub methods containing the word “Get” or “Set” are not transposed. The
Visual Basic interface described here does not use the Component Object Model (COM), but is instead supplied as
Visual Basic source code.

The VB-Motion described here uses C-Motion 4.x. See Section 6.1, C-Motion Versions, for a discussion of the two
threads of C-Motion development.

7.1 Visual Basic Classes

The file PMDLibrary.vb defines a Visual Basic class for each of the opaque data types used in the PMD library:
PMDPeripheral, PMDDevice, PMDAxis, and PMDMemory. PMDPeripheral is inherited by a set of derived classes
for each peripheral type: PMDPeripheralCOM, PMDPeripheralMultiDrop, PMDPeripheralCME,
PMDPeripheralPCI, and PMDPeripheralTCP.

Each class takes care of allocating and freeing the memory used for the “handle” structures used in the C language
interface. The first pointer argument to, for example, a PMDPeriphHandle in a C language procedure call is not needed
because a method call for a particular PMDPe++ripheral object is used instead, and each object manages its own
PMDPeriphHandle.
PMD Resource Access Protocol Programmer’s Reference 133

VB-Motion7
The “Open” procedures used in the C language interface are replaced in Visual Basic with constructor methods that
take the same arguments in the same order, with the exception that the first pointer argument is not needed. “Close”
methods are provided that call the C language “Close” procedures, however these procedures may also be called
automatically as part of the finalization process when objects are garbage collected.

The following example demonstrates how to open a peripheral connection to a PRP device accessible by TCP/IP, and
to access the resources of that device.

Public Class Examples
 Public Sub Example1()

 ' Allocate and open a peripheral connection to a PRP device using TCP/IP.

 ' Note that the arguments for the PMDPeripheralTCP object are the same as for the
 ' C language call PMDPeriphOpenTCP, except that the first argument for the peripheral
 ' struct pointer and the second argument for the device are not used.
 ' The standard .NET class for IP addresses is used instead of a numeric IP address.
 ' DEFAULT_ETHERNET_PORT is a constant defined in PMDLibrary.vb for the default
 ' TCP port used for commands by the PRP device.
 ' 1000 is a timeout value in milliseconds.
 Dim periph As New PMDPeripheralTCP(System.Net.IPAddress.Parse("192.168.0.27"), _
 DEFAULT_ETHERNET_PORT, _
 1000)

 ' Now allocate and connect a device object using the newly opened peripheral.
 ' Instead of using two different names the second argument specifies whether a
 ' PRP device or attached Magellan device is expected.
 Dim DevCME As New PMDDevice(periph, PMDDeviceType.ResourceProtocol)

 ' Once the PRP device is open we can obtain an axis object, which may be used
 ' for any C-Motion commands. Notice that the enumerated value used to specify the axis is
 ' called "Axis1" instead of "PMDAxis1" because the enumeration name already includes
 ‘ the “PMD” prefix.
 Dim axis1 As New PMDAxis(DevCME, PMDAxisNumber.Axis1)

 ' Open an object representing the dual-ported RAM on the PRP device.
 ' Currently only 32 bit memory devices are supported, but other devices may be supported
 ' in the future.
 Dim mem As New PMDMemory(DevCME, PMDDataSize.Size32Bit)

 ' Start the user program on the C-Motion Engine.
 DevCME.TaskStart()

 ' C-Motion procedures returning a single value become class properties, and may be
 ' retrieved or set by using an assignment. The "Get" or "Set" part of the name is dropped.
 Dim pos As Int32
 pos = axis1.ActualPosition

 ' The following line sets the actual position of the axis to zero.
 axis1.ActualPosition = 0
134 PMD Resource Access Protocol Programmer’s Reference

VB-Motion 7
 ' Properties may accept parameters, for example the CurrentLoop parameter is used to set
 ' control gains for the current loops, and takes two parameters. This example sets
 ' the proportional gain for phaseA to 1000
 axis1.CurrentLoop(PMDCurrentLoopNumber.PhaseA, _
 PMDCurrentLoopParameter.ProportionalGain) = 1000

 ' C-Motion procedures returning multiple values become Sub methods, and return their
 ' values using ByRef parameters. The "Get" and "Set" parts of the names are the same as
 ' in the C language binding.
 Dim MPmajor, MPminor, NumberAxes, special, custom, family As UInt16
 Dim MotorType As PMDMotorTypeVersion
 axis1.GetVersion(family, MotorType, NumberAxes, special, custom, MPmajor, MPminor)

 ' C library procedures that accept pointers become methods operating on VB arrays.
 ' This example reads 100 values from dual-ported RAM.
 Dim memvals(0 To 100) As UInt32
 mem.read(memvals, 100, memvals.Length())

 ' If the objects opened here are not explicitly closed they will be closed by the
 ' garbage collector.
 End Sub
End Class

Several general points about the translation from C to Visual Basic are shown in the example:

• Argument type and order are the same, except that the initial “handle” pointer argument is not needed.
The null device pointer used to indicate that a peripheral is opened on the local device is also not needed.

• “Get/Set” procedures returning a single argument become object properties, with parameters if needed.
The property name does not contain “Get” or “Set”, or the “PMD” prefix.

• Procedures returning or setting multiple values are implemented as Sub methods, returning values via
ByRef parameters. “Get” or “Set” is retained in the names, but the “PMD” prefix is not.

• Enumerated value names do not use the “PMD” prefix, but the enumeration names do.

• Procedures reading or writing array data through C pointers instead take Visual Basic arrays of the
appropriate type.

7.2 Using A Magellan Attached Device

The following example illustrates how to obtain an object connected to a Magellan attached device, in this case
connected to a serial port.

Public Class Examples
 Public Sub Example2()
 Dim periph As PMDPeripheral
 Dim MPDev As PMDDevice
 Dim axis2 As PMDAxis
PMD Resource Access Protocol Programmer’s Reference 135

VB-Motion7
 ' Open the connection on COM1, using appropriate serial port parameters
 periph = New PMDPeripheralCOM(1, PMDSerialBaud.Baud57600, _
 PMDSerialParity.None, PMDSerialStopBits.Bits1)

 ' Obtain a device object using the peripheral. Device type MotionProcessor
 ‘ means “Magellan attached”.
 MPDev = New PMDDevice(periph, PMDDeviceType.MotionProcessor)

 ' Finally instantiate an axis object, specifying the desired axis number 2.
 axis2 = New PMDAxis(MPDev, PMDAxisNumber.Axis2)

 ' Example VB-Motion operation: Get the event status
 Dim status As UInt16
 status = axis2.EventStatus
 End Sub
End Class

7.3 Error Handling

Almost all of the PMD C language library procedures return an error code to indicate success or failure. The Visual
Basic versions of these procedures instead throw an exception if the wrapped DLL procedures return an error code.
The exception message will contain the error number and a short description of the error. The Data member of the
exception will contain the error number as an enumeration of type PMDresult, associated with the key “PMDresult”,
so that structured exception handling may be used

to appropriately handle errors.

The following example commands a PRP device to reset, and then ignores the expected error return on the next
command:

dev.Reset()
Try
 Dim major, minor As UInt32
 dev.Version(major, minor)
Catch ex As Exception When ex.Data("PMDresult").Equals(PMDresult.ERR_RP_Reset)
 ' Ignore the expected error
 End Try

Any errors that are not caught will cause the application to display a popup window displaying an error message,
including the error number and description, and a stack trace with file names and line numbers. The popup window
allows a user to continue, ignoring the error, or to abort the application.

While popup windows are useful for debugging, any application controlling motors should be designed to recover
gracefully and safely from any foreseeable error condition, and it is recommended to use Try blocks liberally to make
applications more robust.
136 PMD Resource Access Protocol Programmer’s Reference

Index

A
action reference 29
actions 22
addresses 22
axis handles 129

C
C language library procedure 77
CANbus transport 28
C-Motion 123

Axis handles 129
Engine 123
Engine macros 78
Engine Procedures 123
Engine programming 124
libraries 123
versions 129

console 127

D
data types 77

E
event notification packet 24
exceptions, C-Motion 127

N
naming conventions 77

O
outgoing PRP packet 23
overview, devices 7

P
packet

event notification 24
outgoing PRP 23
response 23
structure 23

PCI bus transport 27
PMD library procedures 79

PRP
action reference 29
actions 22
addresses 22
CANbus transport 28
devices, overview 7
outgoing packet 23
packet structure 23
PCI bus transport 27
resources 21
response packets 23
serial transport 26
sub-actions 22
TCP/IP transport 27
transport layers 25
tutorial 9

PRP Tutorial 9
actions 11
addressing 9
auto-assigned addresses 14
CANbus 19
communications formats 18
communications ports 11
description 9
Ethernet 19
magellan-attached device 16
on-card resources 15
peripheral connections 12
resources 11
serial 18

R
resources, PRP 21
response packets 23
return values 78

S
scope 7
serial transport 26
sub-actions 22
PMD Resource Access Protocol Programmer’s Reference 137

Index

138
T
TCP/IP transport 27
transport layers 25

U
user packets 127

V
VB-Motion 133

error handling 136
Magellan-atttched device 135
Visual Basic, classes 133

versions, C-Motion 129
PMD Resource Access Protocol Programmer’s Reference

PMD Resource Access Protocol Programmer’s Reference 131

For additional information, or for technical assistance,
please contact PMD at (978) 266-1210.

You may also e-mail your request to support@pmdcorp.com

Visit our website at http://www.pmdcorp.com

Performance Motion Devices
80 Central Street

Boxborough, MA 01719

	Table of Contents
	1. Introduction
	1.1 PMD Resource Access Protocol Overview
	1.2 Scope

	2. PMD Resource Access Protocol (PRP) Tutorial
	2.1 Resource Addressing
	2.1.1 PMD Resource Access Protocol (PRP)
	2.1.2 PRP Resources
	2.1.3 PRP Actions

	2.2 Accessing the Communications Ports
	2.2.1 Peripheral Connections
	2.2.2 Managing Automatically Assigned Addresses

	2.3 Accessing On-Card Resources
	2.4 Accessing Magellan-Attached Devices
	2.5 PRP Communication Formats
	2.5.1 PRP Messages Over Serial
	2.5.2 PRP Messages Over CANbus
	2.5.3 PRP Messages over Ethernet

	3. PRP Reference
	3.1 PRP Resources
	3.2 PRP Addresses
	3.3 PRP Actions and Sub-Actions
	3.4 PRP Packet Structure
	3.4.1 Outgoing PRP Packet
	3.4.2 PRP Response Packets
	3.4.3 Event Notification Packet

	3.5 PRP Transport Layers
	3.5.1 PRP Serial Transport
	3.5.2 PRP TCP/IP Transport
	3.5.3 PRP PCI Bus Transport
	3.5.4 PRP CANbus Transport

	3.6 PRP Action Reference
	3.6.1 Action Table - Code Order
	3.6.2 Action Table - Alphabetical Order

	Close various
	CommandFlash CMotionEngine
	CommandTask CMotionEngine
	Command MotionProcessor
	GetConsole CMotionEngine
	GetDefault Device
	GetResetCause Device
	GetTaskState CMotionEngine
	GetVersion Device
	NOP any
	OpenCAN Device
	OpenCAN Device (cont.)
	OpenCMotionEngine Device
	OpenISA Device
	OpenMemory32 Device
	OpenMotionProcessor Device
	OpenCOM Device
	OpenCOM Device (cont.)
	OpenPAR Device
	OpenTCP Device
	OpenTCP Device (cont.)
	OpenUDP Device
	Open UDP Device (cont.)
	OpenDevice Peripheral
	OpenMotionProcessor Peripheral
	OpenMultiDrop Peripheral
	ReadByte Peripheral
	ReadDword Memory
	Receive CMotionEngine
	Receive Peripheral
	Receive Peripheral (cont.)
	Reset Device
	Reset MotionProcessor
	Send CMotionEngine
	Send Peripheral
	SetConsole CMotionEngine
	SetDefault Device
	SetDefault Device (cont.
)SetDefault Device (cont.)
	WriteDWord Memory
	WriteByte Peripheral

	4. PMD C Language Library Procedures
	4.1 Naming Conventions
	4.2 Data Types
	4.3 Return Values
	4.4 C-Motion Engine Macros
	4.5 PMD Library Procedures
	PMDAxisOpen
	PMDTaskGetState
	PMDTaskStart
	PMDTaskStop
	C-Motion Engine
	PMDDeviceClose
	PMDDeviceGetDefault
	PMDDeviceReset
	PMDDeviceSetDefault
	PMDDeviceGetVersion
	PMDTaskGetAbortCode
	PMDDeviceGetTickCount
	PMDMPDeviceOpen
	PMDMemoryClose
	PMDMemoryOpen
	PMDMemoryRead
	PMDMemoryWrite
	PMDPeriphClose
	PMDPeriphOpenCAN
	PMDPeriphOpenCME
	PMDPeriphOpenCOM
	PMDPeriphOpenISA
	PMDPeriphOpenMultiDrop
	PMDPeriphOpenPAR
	PMDPeriphOpenPCI
	PMDPeriphOpenTCP
	PMDPeriphOpenUDP
	PMDPeriphRead
	PMDPeriphReceive
	PMDPeriphReceive (cont.)
	PMDPeriphSend
	PMDPeriphWrite
	PMDIOOpen
	PMDIORead
	PMDIOWrite
	PMDprintf
	PMDputch
	PMDputs
	PMDRPDeviceOpen

	5. C-Motion Engine
	5.1 C-Motion Libraries
	5.2 Procedures Specific to the C-Motion Engine
	5.3 C-Motion Engine Programming
	5.4 The Console
	5.5 User Packets
	5.6 Exceptions

	6. C-Motion
	6.1 C-Motion Versions
	6.2 Axis Handles

	7. VB-Motion
	7.1 Visual Basic Classes
	7.2 Using A Magellan Attached Device
	7.3 Error Handling

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

