Magellan® Motion Control IC
Programmer’'s Command Reference

&>
P MD

Performance Motion Devices, Inc.
80 Central Street
Boxborough, MA 01719

Revision 4.0, June 2015



NOTICE

This document contains proprietary and confidential information of Performance Motion Devices, Inc., and is pro-
tected by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied,

or duplicated in any form, in whole or in part, without the express written permission of PMD.

The information contained in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express
written permission of PMD.

Copyright 1998-2015 by Performance Motion Devices, Inc.

ATLAS, Magellan, ION, Magellan/ION, Pro-Motion, C-Motion, and VB-Motion are trademarks of Performance
Motion Devices, Inc.

Magellan® Motion Control IC Programmer’'s Command Reference




Warranty

PMD warrants that its products shall substantially comply with the specifications applicable at the time of sale, pro-
vided that this warranty does not extend to any use of any PMD product in an Unauthorized Application (as defined
below). Except as specifically provided in this paragraph, each PMD product is provided “as is” and without warranty

of any type, including without limitation implied warranties of merchantability and fitness for any particular purpose.

PMD reserves the right to modify its products, and to discontinue any product or service, without notice and advises
customers to obtain the latest version of relevant information (including without limitation product specifications) be-
fore placing orders to verify the performance capabilities of the products being purchased. All products are sold sub-
ject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to

warranty, patent infringement and limitation of liability.

Unauthorized Applications

PMD products are not designed, approved or warranted for use in any application where failure of the PMD product
could result in death, personal injury or significant property or environmental damage (each, an “Unauthorized
Application”). By way of example and not limitation, a life support system, an aircraft control system and a motor
vehicle control system would all be considered “Unauthorized Applications” and use of a PMD product in such a
system would not be warranted or approved by PMD.

By using any PMD product in connection with an Unauthorized Application, the customer agrees to defend,
indemnify and hold harmless PMD, its officers, directors, employees and agents, from and against any and all claims,
losses, liabilities, damages, costs and expenses, including without limitation reasonable attorneys’ fees, (collectively,
“Damages”) arising out of or relating to such use, including without limitation any Damages arising out of the failure
of the PMD product to conform to specifications.

Disclaimer

PMD assumes no liability for applications assistance or customer product design. PMD does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of PMD covering or relating to any combination, machine, or process in which such
products or services might be or are used. PMD?’s publication of information regarding any third party’s products or
services does not constitute PMD’s approval, warranty or endorsement thereof.

Magellan® Motion Control IC Programmer’'s Command Reference




Related Documents

Magellan Motion Control IC User’s Guide

Complete description of the Magellan Motion Control IC features and functions with detailed theory of its
operation.

Magellan Motion Control IC Electrical Specifications

Booklets containing physical and electrical characteristics, timing diagrams, pinouts, and pin descriptions of
each series:

MC58000 Series (except MC58113), for DC brush, brushless DC, Microstepping, and Pulse & Direction mo-
tion control ICs

MC55000 Series, for Pulse & Direction motion control ICs

MC58113 Series, for single chip DC Brush, brushless DC, microstepping, and Pulse & Direction motion

control ICs with closed loop current control.
Magellan Motion Control IC Developer’s Kit Manual

How to install and configure the DK58000 series and DK55000 series developer’s kit PC board.
Atlas Digital Amplifier User's Manual

Description of the Atlas Digital Amplifier electrical and mechanical specifications along with a summary of
its operational features.

Atlas Digital Amplifier Complete Technical Reference

Complete electrical and mechanical description of the Atlas Digital Amplifier with detailed theory of opera-
tions.

Other Documents

ION Digital Drive User’s Manual

How to install and configure ION Digital Drives.
Prodigy-PCI Motion Card User’s Guide

How to install and configure the Prodigy-PCI motion board.
Prodigy-PC/104 Motion Card User’s Guide

How to install and configure the Prodigy-PC/104 motion board.
Prodigy/CME Standalone Uset’s Guide

How to install and configure the Prodigy/CME standalone motion boatd.
Prodigy/CME Machine-Controller Usetr’s Guide

How to install and configure the Prodigy/ CME machine controller motion boatd.

Magellan® Motion Control IC Programmer’'s Command Reference




Table of Contents

1. The Magellan Family

1.1 Family Summary

~N

1.2 Magellan Motion Control IC Products

~N

2. C-Motion

2.1 Introduction

2.2 C-Motion Versions

o ©

2.3 Files

10

24 Using C-Motion

2.5 Prodigy Motion Card Specific Functions

12

3. VB-Motion

15

3.1 Introduction

15

3.2 Visual Basic Classes

15

4, Instruction Reference

17

4.1 How to Use This Reference

17

5. Instruction Summary Tables

5.1 Descriptions by Functional Category

201
201

5.2 Command Support by Product

204

5.3 Alphabetical Listing

207

5.4 Numerical Listing

211

5.5 Magellan Compatibility

213

Magellan® Motion Control IC Programmer’'s Command Reference




_A Table of Contents

This page intentionally left blank.

Vi Magellan® Motion Control IC Programmer’'s Command Reference




1. The Magellan Family 2

1.1 Family Summary

The Magellan Motion Control IC Programmer’s Command Reference supports the Magellan Family of ICs from PMD, including
the MC58000 Series (DC brush, brushless DC, and step motor) and the MC55000 Series (step motor). In addition,
Magellan processors are used in a number of card and module-level products including ION Digital Drives, Prodigy
motion control cards, and Prodigy/CME Machine Controllet cards.

Magellans are complete IC-based motion processors, providing trajectory generation and related motion control
functions. Depending on the type of motor to be controlled, they provide servo loop closure, on-board commutation
for brushless motors, and high-speed pulse and direction outputs. When the MC58113 is used, when used in ION
Digital Drives, or when used with Atlas Digital amplifiers, they also provide current control, short circuit protection,
and many other amplifier-related functions. Together, these products provide a software-compatible family of dedicated

motion control ICs that can handle a large variety of motion control applications.

1.2 Magellan Motion Control IC Products

The following table presents a feature summary of the various members of the Magellan Motion Control IC family:

MC58000 Series MC55000 Series MC58113 Series
(Except MC58113)

# of axes 1,2, 3,4 1,2, 3,4 I+ (primary & aux
channel encoder input)

Motor types supported DC Brush, Brushless DC, Step motor DC Brush, Brushless DC,

step motor step motor
Output format SPI Atlas, PWM, DAC, Pulse & direction SPI Atlas, PWM, DAC,
pulse & direction pulse & direction

Parallel host communication v v

Serial host communication v v v

CAN 2.0B host communication v v v

SPI host communication v

Incremental encoder input v v v

Parallel word device input 4 v

Index & Home signals v v v

Position capture v v v

Directional limit switches v v v

PWM output v v

Parallel DAC output v

SPI Atlas interface v v

SPI DAC output v v

Pulse & direction output v v v

Digital current control v (with Atlas) v

Field oriented control v (with Atlas) v

Under/overvoltage sense v (with Atlas) v

I)T Current foldback v (with Atlas) v

DC Bus shunt resistor control v

Overtemperature sense v (with Atlas) v

Short circuit sense v (with Atlas) v

Magellan® Motion Control IC Programmer’'s Command Reference 7




A The Magellan Family

MC58000 Series

MC55000 Series

MC58113 Series

Trapezoidal profiling

(Except MC58113)
v

Velocity profiling

S-curve profiling

Electronic gearing

SNENENENEN

On-the-fly changes

PID position servo loop

Dual biquad filters

ARVENENENEN

Dual encoder loop

v (multi-axis
configurations only)

ANEIENENENENENENERN

Programmable derivative sampling
time

v

Feedforward (accel & vel)

Data trace/diagnostics

v

Motion error detection

v" (with encoder)

Axis settled indicator

v (with encoder)

Analog input

Programmable bit output

ANBNERNENENENENERN

Software-invertible signals

User-defined 1/0O

AVRVENENENENENAN

ANRIRRN

Internal Trace Buffer

«

External RAM support

v

Multi-chip synchronization

v
v

v

Chipset configurations

MC58420 (4 axes, 2 ICs)
MC58320 (3 axes, 2 ICs)
MC58220 (2 axes, 2 ICs)
MC58120 (I axis, 2 ICs)
MC58110 (1 axis, | IC)

MC55420 (4 axes, 2 ICs)
MC55320 (3 axes, 2 ICs)
MC55220 (2 axes, 2 ICs)
MC55120 (I axis, 2 ICs)
MC55110 (1 axis, | IC)

MC51 113 (1+ axis, | IC)
MC53113 (I+ axis, | IC)
MC54113 (1+ axis, | IC)
MC58113 (1+ axis, | IC)

IC Package: CP chip MC58x20: 144 pin TQFP MC55x20: 144 pin TQFP 100 pin TQFP
MC58110: 144 pin TQFP MC55110: 144 pin TQFP

IC Package: 10 chip MC58x20: 100 pin TQFP MC55x20: 100 pin TQFP  N/A
MC58110: NA MC55110: NA

Motion control IC DK58420 DK55420 DK51113

developer’s kit p/n’s DK58320 DK55320 DK53113
DK58220 DK55220 DK54113
DK58120 DK55120 DK58113
DK58110 DK55110

Magellan® Motion Control IC Programmer’'s Command Reference




2. C-Motion 5

2.1 Introduction

C-Motion is a “C” source code library that contains all the code required for communicating with the Magellan Motion
Control IC.

C-Motion includes the following features:
*  Axis virtualization.
*  The ability to communicate to multiple Magellan Motion Control ICs.
*  Can be easily linked to any “C/C++" application.

C-Motion callable functions are broken into two groups, those callable functions that encapsulate motion control IC

specific commands, and those callable functions that encapsulate product-specific capabilities.

The motion control IC specific commands are detailed in Chapter 4, Instruction Reference. They are the primary com-
mands that you will use to control the major motion features including profile generation, servo loop closure, motor

output signal generation (PWM and analog), breakpoint processing, trace operations, and many other functions.

Each Magellan Motion Control IC command has a C-Motion command of the identical name, but prefaced by the let-
ters “PMD.” For example, the Magellan command SetPosition is called PMDSetPosition.

2.2 C-Motion Versions

To provide more efficient compiled code for the environments in which different C-Motion-based programs are likely
to be used, two separate implementations of C-Motion are provided:

* Version 4.x, for host programs that communicate with PRP devices, and for C-Motion Engine programs.

* Version 3.x, for all other PMD Magellan products, including non-PRP ION modules, non-CME Prodigy
cards, and Magellan Motion Control ICs.

Both of these C-Motion versions share the same calling sequences for all Magellan commands, however they may not
be mixed in the same program. They do not share the same mechanisms for opening a connection to a Motion Control
IC, as discussed for Version 3.x in section 2.4 “Using C-Motion” on page 10. C-Motion 3.x requires the communica-
tion interface (PCIL, ISA, serial, SPI, or CAN) to be specified at compile time. This allows a smaller program, and, in
the case of a port to a microprocessor host, means that code for interfaces that are not used need not be ported.
C-Motion 3.x uses only the Magellan protocols, and does not support PRP. C-Motion 4.x allows the communications
interface (PCI, TCP, serial, or CAN) to be specified at run-time, and supports multiple connections using different in-
terfaces at the same time. A larger and more complex library is therefore required. C-Motion 4.x supports both the
Magellan protocols, which are used to communicate with Magellan attached Motion Control ICs, and also PRP, which
is used to communicate with Prodigy/CME cards and ION/CME and ION/D digital drives. A port of C-Motion 4.x
to a microprocessor host could certainly omit some interfaces, but source code changes in various parts of the library
would be required.

For more information on using C-Motion version 4.x, see the PMD Resource Access Protocol Programmer’s Refer-

ence.

Magellan® Motion Control IC Programmer’'s Command Reference 9




_A C-Motion

10

2.3 Files

The following table lists the files that make up the C-Motion distribution.

C-Motion.h/C-Motion.c

Definition/declaration of the PMD Magellan command set

PMDpar.h/PMDpar.c

Parallel interface functions

PMDW32ser.h/PMDW32ser.c

Windows serial communication interface functions

PMDutil.h/PMDutil.c

General utility functions

PMDtrans.h/PMDtrans.c Generic transport (interface) functions

PMDecode.h Defines the PMD Magellan and C-Motion error codes
PMDocode.h Defines the control codes for Magellan commands
PMDtypes.h Defines the basic types required by C-Motion

PMDCAN.h/PMDCAN.c

CAN interface command/data transfer functions.

PMDIXXATCAN.h

CAN interface for IXXAT VCI (Virtual Can Interface) API

PMDIXXATCAN.c CAN interface for IXXAT VCI (Virtual Can Interface) APl v3.x
PMDNISPLh SPl interface for National Instruments USB-8452

PMDNISPI.c SPI interface for National Instruments USB-8452
PMDcommon.c Miscellaneous procedures

PMDdevice.h

PMDconio.c Console I/O redirector

PMDdiag.h/PMDdiag.c Diagnostic functions

IXXATVE* IXXAT VCI v3.x include and library files

PLX\*.* PLX Technology (PCI) and library include files

NIVE* National Instruments include and library files

2.4 Using C-Motion

C-Motion can be linked to your application code by including the above “C” source files in your application. Then,

for any application source file that requires access to the motion control IC, include C-Motion.h. In addition, the re-

quired interfaces need to be defined as shown below. Only the required interfaces need to be included.

#define PMD_W32SERIAL INTERFACE

#define PMD_PCI_INTERFACE

By customizing the base interface functions, C-Motion can be ported to virtually any hardware platform. An example

would be 2 memory-mapped IO scheme that uses the patallel interface. This would be built using the PMDPat.c/.h

source files as a basis.

The Magellan Motion Control IC Developer’s Kit board and the Prodigy-PCI Motion Card use the PCI interface chip

provided by PLX Technology. To fully understand the interface mechanism, or to write your own interface software,

you can download the PLX SDK. More information on the functionality and features can be found on the PLX web-

site — http://www.plxtech.com — in the software development kits area.

Magellan® Motion Control IC Programmer’'s Command Reference




C-Motion A

C-Motion is a set of functions that encapsulate the motion control IC command set. Every command has as its first
parameter an “axis handle.” The axis handle is a structure containing information about the interface to the motion
control IC and the axis number that the handle represents. Before communicating to the motion control IC, the axis
handle must be initialized using the following sequence of commands:

g g seq

PMDAXxisHandle hAxis |, hAxis2;
PMDSetupAxisinterfacePCI( &hAxis|, PMDAxis|, 0 );

PMDCopyAxisinterface( &hAxis2, &hAxis|, PMDAXis2 );

The above is an example of initializing communication using the patallel communication interface. Each interface .c
source file contains an example of initializing the interface. Once the axis handle has been initialized, any of the motion
control IC commands can be executed.

The header file C-Motion.h includes the function prototypes for all motion control IC commands as implemented in
C-Motion. See this file for the required parameters for each command. For information about the operation and pur-
pose of each command, see Chapter 4, Instruction Reference.

Many functions require additional parameters. Some standard values are defined by C-Motion and can be used with
the appropriate functions. See PMDtypes.h for a complete list of defined types. An example of calling one of the C-
Motion functions with the pre-defined types is shown below:

PMDSetBreakpoint(&hXAxis, PMDBreakpoint!, PMDAXxis2, PMDBreakpointActionAbruptStop,
PMDBreakpointActualPositionCrossed);

In a few cases commands must be directed explicitly to the Atlas amplifier associated with a Magellan control axis,
examples are the GetVersion and Reset commands. In order to do so an axis handle must be opened for the Atlas
amplifier itself, to do so for axis 2 the following call may be used:

PMDAXxisHandle hAxis2, hAtlas2;
PMDGetAtlasAxisHandle(&hAxis2, &hAtlas2);

2.4.1 C-Motion Functions

The table below describes the functions that are provided by C-Motion in addition to the standard chip command set.

C-Motion functions Arguments Function description
PMDSetupAxisinterface PCI axis_handle Used to setup an axis interface connection for communicat-
axis_number ing over a PCl bus.

board_number

PMDSetupAxisinterface_ISA axis_handle Used to setup an axis interface connection for communicat-
axis_number ing over an ISA (PC/104) bus.
board_number

PMDSetupAxisinterface_Serial  axis_handle Used to setup an axis interface connection for communicat-
axis_number ing over a RS232 or RS485 serial bus.
port_number

Magellan® Motion Control IC Programmer’'s Command Reference

11




_A C-Motion

C-Motion functions

Arguments

Function description

PMDSetupAxisinterface CAN

axis_handle
axis_number
board_number

Used to setup an axis interface connection for communicat-
ing over a CAN bus.

PMDSetupAxisinterface_Parallel

axis_handle
axis_number
board_address

Low level function used to setup an axis interface for paral-
lel communications in an embedded system.

PMDSetupAxisinterface_SPI axis_handle Used to setup an axis interface connection for communicat-
axis_number ing over an SPI bus.
device

PMDCloseAxisInterface axis_handle Should be called to terminate an interface connection.

PMDCopyAxisinterface dest_axis_handle Used for opening an axis interface connection to the same
src_axis_handle device as used by src_axis_handle, but a different axis.
axis_number

PMDGetErrorMessage ErrorCode Returns a character string representation of the corre-

sponding PMD chip or C-Motion error code.

GetCMotionVersion

MajorVersion
MinorVersion

Returns the major and minor version number of C-Motion.

offset_in_dwords
words_to_write

PMDHardReset axis_handle This function causes a “hard” reset of the motion control
IC. Unlike all other card-specific commands, this command
is processed directly through the bus interface.

PMDReadDPRAM axis_handle This function reads directly from the onboard dual-port

data RAM via the bus interface (if applicable).
offset_in_dwords
words_to_read

PMDWriteDPRAM axis_handle This function writes directly to the onboard dual-port RAM

data via the bus interface (if applicable).

2.5 Prodigy Motion Card Specific Functions

Several auxiliary functions are included in addition to the standard Magellan API commands for use with the Magellan-
based Prodigy Motion Cards only. The functions are for configuring functions on the motion control board. The follow-

ing table describes the functions. For more information, see the user’s guide for your motion control card.

C-Motion function Arguments Function description
PMDMBWriteDigitalOutput axis_handle, This function writes to the eight general-purpose digital I/
write_value O signals (digitalOut0-7). Write_value holds the eight sig-

nals in its low order 8 bits.

PMDMBReadDigitallnput

axis_handle, read_value

This function reads the value of the signals Digitalln0-7, and
returns them in the low order 8 bits of read_value.

PMDMBReadDigitalOutput

axis_handle, read_value

This function reads the value of the signals DigitalOut0-7,
and returns them in the low order 8 bits of read_value.

PMDMBSetAmplifierEnable

axis handle, mask,
write_value

This function writes to the 4 amplifier enable signals
(AmpEnable|-4) using mask and write_value. Whena |
appears in mask, the corresponding bit position in
write_value is written to the corresponding signal. The val-
ues for mask and write_value are all 0- shifted; that is, they
are stored in the lowest order 4 bits.

PMDMBGetAmplifierEnable

axis_handle, read value

This function reads the values of AmpEnable 1-4, and
returns them in the low order 4 bits of read_value.

PMDMBSetDACOutputEnable

axis handle, write_value

This function sets the DACOutputEnable status. A written
value of | enables DAC output, while a written value of 0
disables DAC output.

12

Magellan® Motion Control IC Programmer’'s Command Reference




C-Motion A

C-Motion function

Arguments

Function description

PMDMBGetDACOutputEnable

axis_handle, read value

This function reads the value of the DACOutputEnable
function. A value of | indicates DAC output enabled; a
value of 0 indicates DAC output disabled.

PMDMBSetWatchDog axis handle This function writes to the correct value to the watchdog
register, so that for the next 104 milliseconds the card will
not be reset by the watchdog circuitry.

PMDMBGetResetCause axis_handle, This function returns the reset cause in the variable

reset_cause reset_cause, reset_cause and also clears the reset condi-
tion.

PMDMBReadCardID axis_handle, This function returns the card ID, encoded as defined in

card_ID the preceeding table.

Magellan® Motion Control IC Programmer’'s Command Reference

13




_A C-Motion

This page intentionally left blank.

14 Magellan® Motion Control IC Programmer’'s Command Reference




3. VB-Motion ¢

3.1 Introduction

VB-Motion is the interface from Microsoft Visual Basic NET to the PMD C-Motion library for control of Magellan
Motion Processors. It can be easily integrated with any Visual Basic or C# application. The library supports commu-
nication to Magellan Developet’s Kit Board and Magellan Motion Controller via serial (RS232/RS485) and CAN (IXX-
AT), and where applicable PCI and PC/104 parallel interfaces.

There are two parts to the Visual Basic interface code:

1 C-Motion.dll is a dynamically loadable library of all documented procedures in the PMD host libraries, in-
cluding all C-Motion procedures.

2 PMDLibrary.vb is Visual Basic source code containing definitions and declarations for DLL procedures, enu-
merated types, and data structures supporting the use of C-Motion.dll from Visual Basic. PMDLibrary.vb
should be included in any Visual Basic project for PMD device control.

3 PMDLibrarydllis a NET library compiled from PMDLibrary.vb and can be used with both Visual Basic and
C# projects. PMDLibrary.dll should be included in any C# project for PMD device control.

Both debug and release versions of C-Motion.dll and PMDLibrary.dll are provided in directories CMESDK\Host-
Code\Debug and CMESDK\HostCode\Release, respectively. The library input file C-Motion.lib is also provided so that
C-Motion.dll may be used with C/C++ language programs. When compiling C/C++ programs to be linked against
the DLL the preprocessor symbol PMD_IMPORTS must be defined.

C-Motion.dll must be in the executable path when using it, either from a C or a Visual Basic program. Frequently the

easiest and safest way of doing this is to put it in the same directory as the executable file.
PMDLibrary.vb is located in the directory CMESDK\HostCode\DotNet.

The VB-Motion described here uses C-Motion in the CMESDK.

3.2 Visual Basic Classes

The file PMDLibrary.vb defines a Visual Basic class for each of the opaque data types used in the PMD library:

PMDPeripheral, PMDDevice, PMDAXxis, and PMDMemory. PMDPeripheral is inherited by a set of detived
classes for each petipheral type: PMDPeripheral COM, PMDPeripheral CAN, PMDPeripheralPCl, and
PMDPeripheral TCP. Each class takes cate of allocating and freeing the memory used for the “handle” structures
used in the C language interface.

The following example illustrates how to obtain a Magellan axis object connected to a serial port.

Public Class Examples
Public Sub Example2()
Dim periph As PMDPeripheral
Dim Magellan As PMDDevice
Dim axis2 As PMDAXis

' Open the connection on COMI, using appropriate serial port parameters
periph = New PMDPeripheral COM(|, PMDSerialBaud.Baud57600, _

Magellan® Motion Control IC Programmer’'s Command Reference 15




16

PMDSerialParity.None, PMDSerialStopBits.Bits | )

' Obtain a Magellan device object using the peripheral.
Magellan = New PMDDevice(periph, PMDDeviceType.MotionProcessor)

' Finally instantiate an axis object for axis number 2.
axis2 = New PMDAXxis(Magellan, PMDAxisNumber.Axis2)

' Example VB-Motion operation: Get the event status
Dim status As Ulntl 6
status = axis2.EventStatus
End Sub
End Class

Magellan® Motion Control IC Programmer’'s Command Reference




4. Instruction Reference

4.1 How to Use This Reference

The instructions are arranged alphabetically, except that all “Set/Get” pairs (for example, SetVelocity and GetVelocity)

are described together. Each description begins on a new page and most occupy no more than a single page. Each page

is organized as follows:

Name The instruction mnemonic is shown at the left, its hexadecimal code at the right.

Syntax The instruction mnemonic (in bold) and its required arguments (in italic) are shown with all
arguments separated by spaces.

Buffered Certain parameters and other data written to the motion control IC are buffered. That is, they are
not acted upon until the next Update or MultiUpdate command is executed. These parameters
are identified by the word “buffered” in the instruction heading.

Motor Types The motor types to which this command applies. Supported motor types are printed in black;
unsupported motor types for the command are greyed out.

Arguments There are two types of arguments: encoded-field and numeric.

Encoded-field arguments are packed into a single |6-bit data word, except for axis, which occupies
bits 8-9 of the instruction word. The name of the argument (in italic) is that shown in the generic
syntax. Instance (in italic) is the mnemonic used to represent the data value. Encoding is the value
assigned to the field for that instance.

For numeric arguments, the parameter value, the type (signed or unsigned integer), and the range of
acceptable values are given. Numeric arguments may require one or two data words. For 32-bit
arguments, the high-order part is transmitted first.

Packet Structure

This is a graphic representation of the |6-bit words transmitted in the packet: the instruction, which
is identified by its name, followed by 1, 2, or 3 data words. Bit numbers are shown directly below
each word. For each field in a word, only the high and low bits are shown. For 32-bit numeric data,
the high-order bits are numbered from 16 to 31, the low-order bits from 0 to 15.

The hex code of the instruction is shown in boldface.

Argument names are shown in their respective words or fields.

For data words, the direction of transfer—read or write—is shown at the left of the word's diagram.
Unused bits are shaded. All unused bits must be 0 in data words and instructions sent (written) to
the motion control IC.

In the case of a Magellan controlling an Atlas amplifier, an axis field with bit 5 set is used to indicate
that a command should be passed directly to the Atlas connected to the axis indicated by the lower
4 axis bits, and the result returned.

Description

Describes what the instruction does and any special information relating to the instruction.

Atlas

Describes any communication to an associated Atlas amplifier as a result of the instruction. Atlas
operation is quite transparent, but extra SPl communication can significantly slow down Magellan
command processing because a result must be received from Atlas before it is passed on to the
Magellan host. Any comments in this section do not apply to any Magellan axis not connected to an
Atlas amplifier. This section will not be present in the case of commands without any Atlas
implications. For more information on the behavior of Atlas commands, see the Atlas Digital Amplifier
Complete Technical Reference.

Restrictions

Describes the circumstances in which the instruction is not valid, that is, when it should not be
issued. For example, velocity, acceleration, deceleration, and jerk parameters may not be issued
while an S-curve profile is being executed.

C-Motion API

The syntax of the C function call in the PMD C-Motion library that implements this motion control
IC command.

VB-Motion API

The Visual Basic syntax for the function in the PMD VB-Motion library that implements this motion
control IC command. Properties and methods are shown with their associated root object name
separated by a period.

see

Refers to related instructions.

Magellan® Motion Control IC Programmer’'s Command Reference

L

17




O AdjustActualPosition Fbh

Syntax
Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

18

AdjustActualPosition axis position

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
position signed 32 bits —23"t0 2311 unity counts
microsteps

AdjustActualPosition
| 0 | axis | F5h |
15 12 11 8 7 0
First data word
write [ position (high-order part) |
31 16
Second data word

write | position (low-order part) |
15 0

The position specified as the parameter to AdjustActualPosition is summed with the actual position
register (encoder position) for the specified axis. This has the effect of adding or subtracting an
offset to the current actual position. At the same time, the commanded position is replaced by the
new actual position value minus the position error. This prevents a servo “bump” when the new
axis position is established. The destination position (see SetPosition (p. 158)) is also modified by
this amount so that no trajectory motion will occur when a trajectory update is performed. In effect,
this command establishes a new reference position from which subsequent positions can be

calculated. It is commonly used to set a known reference position after a homing procedure.

On axes configured for stepping and microstepping motors, the position error is zeroed by this

command.

AdjustActualPosition takes effect immediately; it is not buffered.

PMDresult PMDAdjustActualPosition (PMDAxisInterface axis intf,
PMDint32 position)

MagellanAxis.AdjustActualPosition ([in] position)

GetPositionError (p. 51), GetActualVelocity (p. 30), Set/GetActualPositionUnits (p. 82),
Set/GetActualPosition (p. 80)

Magellan® Motion Control IC Programmer’'s Command Reference




CalibrateAnalog 6Fh N

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion AP

see

CalibrateAnalog axis position

| DC Brush | BrushlessDC | Microstepping |
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
option leg currents 0
None
| axis | 6Fh |
15 12 N 8 7 0
First data word
write | option |
15 0

The CalibrateAnalog command is used to adjust the adjustable offsets for some analog input channels.
The option argument controls the set of analog channels calibrated, currently the only choice is to
calibrate the four leg current inputs for a MC58113 motion control IC.

The calibration process assumes that the actual input to the analog channels will be zero. For the leg
current sensors it is generally sufficient to set the motor command to zero and ensure that the motor is

not moving. Whether motor output should be enabled or not depends on external circuitry.

Calibration is accomplished by averaging a number of readings; 100 ms after sending the command the
process may be assumed to be complete.

This command is supported only by MC58113 seties products.

PMDresult PMDCalibrateAnalog (PMDAxisInterface axis intf,
PMDuintl6 option);

MagellanAxis.CalibratelAnalog( [in] option )

Set/GetAnalogCalibration (p. 83), ReadAnalog (p. 66)

Magellan® Motion Control IC Programmer’'s Command Reference 19




O ClearDriveFaultStatus 6Ch

20

Syntax
Motor Types

Arguments

Packet
Structure

Description

Atlas

Restrictions

C-Motion API
VB-Motion API

see

ClearDriveFaultStatus axis

[ DC Brush | Brushless DC | Microstepping [ Pulse & Direction
Name Instance Encoding
axis Axis1 0

Axis2 1

Axis3 2

Axis4 3

ClearDriveFaultStatus
| 0 | axis | 6Ch |
15 12 1 8 7 0

ClearDriveFaultStatus clears all bits in the Drive Fault Status register. For ION, it should be
executed after power-up, after using GetDriveFaultStatus to examine if any hard faults caused the
power cycle. For other products, ClearDriveFaultStatus should be used after determining the

cause of a Drive Exception event, before re-enabling output.

This command is relayed to any attached Atlas amplifier before being applied to internal Magellan
state.

Note that the Atlas Motor Type Mismatch bit, which is maintained by Magellan, may not be cleared
by this command. That bit may be cleared by SetMotorType.

This command is not available in products that do not include drive amplifier support.

For ION, this command can only be executed when motor output is disabled (e.g., immediately

after power-up or reset).

PMDresult PMDClearDriveFaultStatus (PMDAxisInterface axis intf)

MagellanAxis.ClearDriveFaultStatus ()

GetDriveFaultStatus (p. 39)
SetMotorType (p. 144)

Magellan® Motion Control IC Programmer’'s Command Reference




Clearinterrupt ACh

Syntax
Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API
VB-Motion API

see

Clearinterrupt axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0

Axis2 1

Axis3 2

Axis4 3

Clearinterrupt
| 0 | axis | 4Ch |
15 12 1 8 7 0

ClearInterrupt resets the /Hostlnterrupt signal to its inactive state. If interrupts are still pending, the
/Hostlnterrupt line will teturn to its active state within one chip cycle. See Set/GetSampleTime (p. 166)
for information on chip cycle timing, This command is used after an interrupt has been recognized and
processed by the host; it does not affect the Event Status register. The ResetEventStatus command should
be issued prior to the Clearlnterrupt command to clear the condition that generated the interrupt. The
ClearInterrupt command has no effect if it is executed when no interrupts are pending.

When communicating using CAN, this command resets the interrupt message sent flag. When an
interrupt is triggered on an axis, a single interrupt message is sent and no further messages will be sent
by that axis until this command is issued.

When serial or parallel communication is used, the axis number is not used.

For products without a /Hostlnterrupt line, this command is stll applicable to the CAN
communications. For products without a /HostInterrupt line or CAN communications, this command

is not used.
PMDresult PMDClearInterrupt (PMDAxisInterface axis intf)
MagellanAxis.ClearInterrupt ()

GetlinterruptAxis (p. 49), Set/GetinterruptMask (p. 136), ResetEventStatus (p. 75).

Magellan® Motion Control IC Programmer’'s Command Reference

21




O ClearPositionError buffered 47h

22

Syntax
Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API
VB-Motion API

see

ClearPositionError axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0

Axis2 1

Axis3 2

Axis4 3

ClearPositionError
| 0 | axis | 47h |
15 12 1 8 7 0

ClearPositionError scts the profile’s commanded position equal to the actual position (encoder
input), thereby clearing the position error for the specified axis. This command can be used when
the axis is at rest, or when it is moving.

ClearPositionError is a buffered command. The new value set will not take effect until the next
Update or MultiUpdate command, with the Trajectory bit set in the update mask commands.

This command should not be sent while the chip is executing a move using the S-curve profile
mode.

PMDresult PMDClearPositionError (PMDAxisInterface axis intf)
MagellanAxis.ClearPositionError ()

GetPositionError (p. 51), MultiUpdate (p. 63), Set/GetPositionErrorLimit (p. 159), Update (p.
197)

Magellan® Motion Control IC Programmer’'s Command Reference




NVRAM

Syntax

Arguments

Packet
Structure

Description

NVRAM axis option value

Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
option Atlas NVRAM mode 0
Magellan NVRAM mode 256
Erase NVRAM 1
Write 2
Block Write Begin 3
Block Write End 4
Skip 8
Type Range
value unsigned 16 bit see below
NVRAM
| 0 | axis | 30h |
15 12 1 8 7 0
write | option |
15 0
write | value |
15 0

The NVRAM command is used to write the non-volatile RAM (NVRAM) used for initialization on
MC58113 series motion control ICs and on Atlas amplfiers. The NVRAM command is first used to put
the processor to be programmed into NVRAM mode, which supports only the commands necessary
for its purpose. Once the processor is in NVRAM mode more NVRAM commands are used to erase
and re-program NVRAM. NVRAM mode is exited by using the reset command; when programming
Atlas this command must be sent to the Atlas axis. Even when programming Atlas all NVRAM
commands should be sent to the Magellan axis, otherwise spurious SPI checksum errors will be signaled.

Changing to NVRAM mode, erasing, or writing NVRAM data may take more time than the other
commands. When programming the MC58113 NVRAM the timeout period should be increased to at
least 10 seconds; after each operation fully completes the return status may be read to confirm that the
operation succeeded.

When programming Atlas a different procedure is required. Atlas will return command status after
checking arguments but before beginning an NVRAM operation, and will not respond to SPI
commands while busy programming NVRAM. The Magellan controlling Atlas should be polled using
GetDriveStatus after sending a NVRAM command, until the Atlas Not Connected bit is clear. If a flash
error has occurred then the Instruction Error bit of the Event Status register will be set, and the
GetlnstructionError command may be sent to Atlas for more information. When writing NVRAM data
one word at a time it is not necessary to check for error status after each write, the error status is latched,
and may be checked periodically.

Magellan® Motion Control IC Programmer’'s Command Reference

23




O NVRAM (cont.)

Description The option argument to NVRAM specifies the particular operation to perform:

(cont'd) NVRAM mode (256) will put an MC58113 series motion control IC into NVRAM mode. Motor

output must be disabled.

Atlas NVRAM mode (0) will put an attached Atlas amplifier into NVRAM mode. Motor output
must be disabled. All erase or program commands are sent to the Atlas amplifier unless the
Magellan processor itself is in NVRAM mode. The value argument should be zero for this
command.

The remaining operations will succeed only if either the Magellan processor itself or an attached
Atlas amplifier is in NVRAM mode, otherwise an Invalid register state for command error will be

raised. The value argument should be zero for this command.

Erase NVRAM (1) will erase the entire non-volatile memory, meaining that all bits will be set.
NVRAM must be completely erased before any words may be written. The value argument should
be zero for this command.

Write (2) will write a single word of NVRAM, which is specified by the value argument. Words are

written in sequence, from the beginning.

Skip (8) may be used to leave the number of words specified in the value argument unwritten, that
is, with a value of OxFFFE. Writing may resume afterwards. Itis not necessary to use this command

in the usual case.

Block Write Begin (3) and Block Write End (4) may be used to speed up NVRAM operations that

are limited by communication bandwidth; their use is not required.

A block write operation is begun by using the BlockWriteBegin command, with the number of
words that will be sent as a block specified in the value argument. A block may be at most 32 words.

No polling procedure is required after a Block Write Begin command.

The next step is to send the data words. These are sent without the usual Magellan command

format, therefore no other commands may be sent until the entire block is transmitted.
If using serial communications the words are sent as is, high byte first.

If using CANBus, the words are sent without any additional formatting. At most four words may
be sent per CAN packet.

If using SPI communications, the words are sent without any additional formatting, at most four
words may be sent for each cycle of the ~HostSPIEnable signal.

If using parallel communications the words are sent without any additional formatting, with the
~HostWrite signal high, that is, as though they were command words. At most one word may be sent
per ~HostWrite cycle.

The block write operation is concluded by sending a BlockWriteEnd comamnd. The value
argument to this command must be the 16-bit ones complement checksum of all words sent since
the BlockWriteBegin command. If the checksum matches then the processor will write all words
to NVRAM, in order. When programming MC58113 NVRAM a long wait may be required. When
programming Atlas NVRAM the polling procedure described above for NVRAM writes should be
followed.

Atlas This command will be relayed to an attached Atlas amplifier unless the NVRAM mode (256) option
is selected or it is sent to an MC58113 series motion control IC which is in NVRAM mode.

24 Magellan® Motion Control IC Programmer’'s Command Reference




NVRAM (cont.)

Restrictions Once put in NVRAM mode an Atlas amplifier or MC58113 series motion control IC will accept only a
restricted set of commands. There is no way to enable motor output, and Atlas will not accept torque
commands.

VB-Motion API MagellanAxis.NVRAM( [in] option, [in] value )

C-Motion API PMDresult PMDNVRAM (PMDAxisInterface axis intf,

PMDuintl6é option,
PMDuintl6 wvalue) ;
see GetDriveStatus (p. 41), GetEventStatus (p. 43), GetInstructionError (p. 47), Reset (p. 70)

Magellan® Motion Control IC Programmer’'s Command Reference

25




O GetActiveMotorCommand 3Ah

Syntax GetActiveMotorCommand axis
Motor Types | DC Brush | BrushlessDC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Returned data Type Range Scaling Units
command signed 16 bits —2"5 to 251 100/2" % output
Packet GetActiveMotorCommand
Structure | 0 [ axis | 3Ah |
15 12 1 8 7 0
Data
read | command |
15 0
Description GetActiveMotorCommand returns the value of the motor output command for the specified axis.

This is the input to the commutation or FOC current control. Its source depends on the motor
type, as well as the operating mode of the axis.

For brushless DC and DC brush motors: If position loop is enabled, it is the output of the position
servo filter. If trajectory generator is enabled without the position loop, it is the output of the
trajectory generator. If both trajectory generator and position loop are disabled, it is the contents

of the motor output command register.

For microstepping motors: It is the contents of the motor output command register, subject to

holding current reduction.
Atlas
Restrictions

C-Motion API PMDresult PMDGetActiveMotorCommand (PMDAxisInterface axis intf,
PMDintl6* command)

VB-Motion API Dim command as Short
command = MagellanAxis.ActiveMotorCommand

see Set/GetMotorCommand (p. 141), Set/GetOperatingMode (p. 146),
GetActiveOperatingMode (p. 27)

26 Magellan® Motion Control IC Programmer’'s Command Reference




GetActiveOperatingMode

57h

Syntax
Motor Types

Arguments

Returned Data

Packet
Structure

Description

Atlas

Restrictions

C-Motion API

VB-Motion API

see

GetActiveOperatingMode axis

[ DC Brush | Brushless DC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type
mode unsigned 16 bits bit field
GetActiveOperatingMode
| 0 | axis [ 57h |
15 12 1M 8 7 0
First data word
read [ mode |
15 0

GetActiveOperatingMode gets the actual operating mode that the axis is currently in. This may or may
not be the same as the static operating mode, as safety responses or programmable conditions may
change the Active Operating Mode. When this occurs, the Active Operating Mode can be changed to
the programmed static operating mode using the RestoreOperatingMode command. The bit

definitions of the operating mode are given below.

Name Bit Description

Axis Enabled 0 0: No axis processing, axis outputs in Reset state. |: axis active.
Motor Output Enabled | 0: axis motor outputs disabled. |: axis motor outputs enabled.
Current Control Enabled 2 0: axis current control bypassed. |: axis current control active.
— 3 Reserved

Position Loop Enabled 4 0: axis position loop bypassed. |: axis position loop active.
Trajectory Enabled 5 0: trajectory generator disabled. |: trajectory generator enabled.
— 6-15 Reserved

When the axis is disabled, no processing will be done on the axis, and the axis outputs will be at their
reset states. When the axis motor output is disabled, the axis will function normally, but its motor
outputs will be in their disabled state. When a loop is disabled (position or current loop), it operates by
passing its input directly to its output, and clearing all internal state variables (such as integrator sums,
etc.). When the trajectory generator is disabled, it operates by commanding zero (0) velocity.

Note that the current control bit is meaningful whenever an axis is connected to an Atlas amplifier.

The possible modes of an axis are product specific, and in some cases axis specific. See the product uset’s

guide for a description of what modes are supported on each axis.

PMDresult PMDGetActiveOperatingMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

Dim mode as Short
mode = MagellanAxis.ActiveOperatingMode

GetOperatingMode (p. 146), RestoreOperatingMode (p. 77), Set/GetEventAction (p. 125),
Set/GetBreakpoint (p. 89)

Magellan® Motion Control IC Programmer’'s Command Reference




O GetActivityStatus

AGh

Syntax GetActivityStatus axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Returned Data Type
status unsigned 16 bits see below
Packet GetActivityStatus
Structure | 0 [ axis | A6h |
15 12 8 7 0
Data
read | [ [ [ [ [0 [ [ [ |
15 13 12 10 9 8 7 6 5 3 2 1 0
Description GetActivityStatus reads the 16-bit Activity Status register for the specified axis. Each of the bits in

this register continuously indicate the state of the motion control IC without any action on the part

of the host. There is no direct way to set or clear the state of these bits, since they are controlled by

the motion control IC.

The following table shows the encoding of the data returned by this command.

Name

Bit(s)

Description

Phasing Initialized 0

Set to | if phasing is initialized (brushless DC axes only).

At Maximum Velocity |

Set to | when the trajectory is at maximum velocity. This bit is
determined by the trajectory generator, not the actual encoder
velocity.

Tracking

Set to | when the axis is within the tracking window.

Current Profile Mode  3-5

Contains trajectory mode encoded as follows:

bit 5 bit 4 bit 3 Profile Mode

0 0 0 Trapezoidal

0 0 | Velocity Contouring
0 | 0 S-curve

0 | | Electronic Gear

Reserved; not used; may be 0 or |.

Axis Settled

Set to | when the axis is settled.

Position Loop Enabled

Set to | when position loop or trajectory is enabled.

V|||

Position Capture

Set to | when a value has been captured by the high speed
position capture hardware but has not yet been read.

28 Magellan® Motion Control IC Programmer’'s Command Reference




GetActivityStatus (cont.)

A6h

Description
(cont.)

Restrictions

C-Motion API

VB-Motion API

see

Name Bit(s) Description

In-motion 10 Set to | when the trajectory generator is executing a
profile.

In Positive Limit 11 Set to | when the positive limit switch is active.

In Negative Limit 12 Set to | when the negative limit switch is active.

Profile Segment  13-15 When the profile mode is S-curve, it contains the profile

segment number -7 while profile is in motion, and
contains a value of 0 when the profile is at rest. This field
is undefined when using the Trapezoidal and Velocity
Contouring profile modes.

PMDresult PMDGetActivityStatus (PMDAxisInterface axis intf,
PMDuintl6* status)

Dim status as Short
status = MagellanAxis.ActivityStatus

GetEventStatus (p. 43), GetSignalStatus (p. 53), GetDriveStatus (p. 41)

Magellan® Motion Control IC Programmer’'s Command Reference

29




O GetActualVelocity ADh

30

Syntax
Motor Types

Arguments

Returned Data

Packet
Structure

Description

Restrictions

C-Motion API

VBI-Motion API

see

GetActualVelocity axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
actual velocity signed 32 bits -221t02%1  1/276 counts/cycle
GetActualVelocity
| 0 | axis | ADh |
15 12 1 8 7 0

First data word
read | actual velocity (high-order part) |
31 16
Second data word
read | actual velocity (low-order part) |
15 0

GetActualVelocity reads the value of the actual velocity for the specified axis. The actual velocity is
derived by subtracting the actual position during the previous chip cycle from the actual position
for this chip cycle. The result of this subtraction will always be integer because position is always
integer. As a result the value returned by GetActualVelocity will always be a multiple of 65,536
since this represents a value of one in the 16.16 number format. The low word is always zero (0).
This value is the result of the last encoder input, so it will be accurate to within one cycle.

Scaling example: If a value of 1,703,936 is retrieved by the GetActualVelocity command (high
word: 01Ah, low word: Oh), this corresponds to a velocity of 1,703,936/65,536 or 26 counts/cycle.

PMDresult PMDGetActualVelocity (PMDAxisInterface axis intf,
PMDint32* velocity)

Dim velocity as Long
velocity = MagellanAxis.ActualVelocity

GetCommandedVelocity (p. 36), GetActualPosition (p. 80)

Magellan® Motion Control IC Programmer’'s Command Reference




GetBusVoltage 40h

Syntax GetBusVoltage axis
Motor Types [ DC Brush [ Brushless DC [ Microstepping [ Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Returned Data Type Range Scaling
voltage unsigned 16 bits 0 to 251 product specific
Packet GetBusVoltage
Structure | 0 [ axis [ 40n |
15 12 1 8 7 0

First data word

read | voltage |
15 0

Description GetBusVoltage gets the most recent bus voltage reading from the axis. Consult specific product

documentation for scaling information.

Atlas This command is relayed to any connected Atlas amplifier.
Restrictions GetBusVoltage is only available in products equipped with bus voltage sensors.
C-Motion API PMDresult PMDGetBusVoltage (PMDAxisInterface axis intf,

PMDuintlé6* voltage)

VB-Motion API Dim voltage as Short
voltage = MagellanAxis.BusVoltage

see Get/SetDriveFaultParameter (p. 117)

Magellan® Motion Control IC Programmer’'s Command Reference




O GetCaptureValue 36h

Syntax GetCaptureValue axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Returned data Type Range Scaling Units
position signed 32 bits 2% to 2311 unity counts
microsteps
Packet GetCaptureValue
Structure | 0 | axis | 36h |
15 12 1 8 7 0

First data word
read | position (high-order part) |
31 16
Second data word
read | position (low-order part) |
15 0

Description GetCaptureValue returns the contents of the position capture register for the specified axis. This

command also resets bit 9 of the Activity Status register, thus allowing another capture to occur.

If actual position units is set to steps, the returned position will be in units of steps.

Restrictions

C-Motion API PMDresult PMDGetCaptureValue (PMDAxisInterface axis intf,
PMDint32* position)

VBI-Motion API Dim position as Long
position = MagellanAxis.CaptureValue

see Set/GetCaptureSource (p. 103), Set/GetActualPositionUnits (p. 82), GetActivityStatus (p. 28)

32 Magellan® Motion Control IC Programmer’'s Command Reference




GetChecksum F8h

Syntax GetChecksum
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments None
Returned data Name Type
checksum unsigned 32 bits
Packet GetChecksum
Structure | 0 [ F8h |
15 8 7 0

First data word
read | checksum (high-order part) |
31 16
Second data word
read | checksum (low-order part) |
15 0

Description GetChecksum reads the chips internal 32-bit checksum value. The return value is dependent on the

silicon revision number of the motion control IC.
Restrictions

C-Motion API PMDresult PMDGetChecksum (PMDAxisInterface axis intf,
PMDuint32* checksum)

VB-Motion API Dim checksum as Long
checksum = MagellanObject.Checksum

see

Magellan® Motion Control IC Programmer’'s Command Reference




O GetCommandedAcceleration A7h

34

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

GetCommandedAcceleration axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
acceleration  signed 32 bits —2% 0 211 1/21¢ counts/cycle?

microsteps/cycle?

GetCommandedAcceleration
| 0 | axis | A7h |
15 12 11 8 7 0
First data word
read | acceleration (high-order part) |
31 16
Second data word

read | acceleration (low-order part) |
15 0

GetCommandedAcceleration returns the commanded acceleration value for the specified axis.

Commanded acceleration is the instantaneous acceleration value output by the trajectory generator.

Scaling example: If a value of 114,688 is retrieved using this command then this corresponds to
114,688/65,536 = 1.750 counts/cycle? acceleration value.

PMDresult PMDGetCommandedAcceleration (PMDAxisInterface axis intf,
PMDint32* acceleration)

Dim acceleration as Long
acceleration = MagellanAxis.CommandedAcceleration

GetCommandedPosition (p. 35), GetCommandedVelocity (p. 36)

Magellan® Motion Control IC Programmer’'s Command Reference




GetCommandedPosition 1Dh

Syntax GetCommandedPosition axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Returned data Type Range Scaling Units
position signed 32 bits -22"t0 21 unity counts
microsteps
Packet GetCommandedPosition
Structure | 0 [ axis [ 1Dh |
15 12 11 8 7 0

First data word
read | position (high-order part) |
31 16
Second data word
read | position (low-order part) |
15 0

Description GetCommandedPosition returns the commanded position for the specified axis. Commanded position

is the instantaneous position value output by the trajectory generator.

This command functions in all profile modes.
Restrictions

C-Motion API PMDresult PMDGetCommandedPosition (PMDAxisInterface axis intf,
PMDint32* position)

VB-Motion API Dim position as Long
position = MagellanAxis.CommandedPosition

see GetCommandedAcceleration (p. 34), GetCommandedVelocity (p. 36)

Magellan® Motion Control IC Programmer’'s Command Reference




O GetCommandedVelocity 1Eh

36

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

GetCommandedVelocity axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
velocity signed 32 bits —231 to 2%'—1 1/216 counts/cycle

microsteps/cycle

GetCommandedVelocity
| 0 | axis | 1Eh |
15 12 11 8 7 0
First data word
read | velocity (high-order part) |
31 16
Second data word

read | velocity (low-order part) |
15 0

GetCommandedVelocity returns the commanded velocity value for the specified axis. Commanded

velocity is the instantaneous velocity value output by the trajectory generator.

Scaling example: If a value of —1,234,567 is retrieved using this command (FFEDh in high word,
2979 in low wotd) then this corresponds to —1,234,567/65,536 = —18.8380 counts/cycle velocity

value.

PMDresult PMDGetCommandedVelocity (PMDAxisInterface axis intf,
PMDint32* velocity)

Dim velocity as Long
velocity = MagellanAxis.CommandedVelocity

GetCommandedAcceleration (p. 34), GetCommandedPosition (p. 35)

Magellan® Motion Control IC Programmer’'s Command Reference




GetCurrentLoopValue 11h

Syntax GetCurrentLoopValue axis loopnum node
Motor Types | DC Brush | BrushlessDC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
phase Phase A 0
Phase B 1
node Reference 0
Actual Current 1
Error 2
Integrator Sum 3
— (Reserved) 4
Integrator Contribution 5
Output 6
1>t Energy 10
Returned data Type Range/Scaling
value signed 32 bits see below
Packet GetCurrentLoopValue
Structure | 0 [ axis [ 71h |
15 12 11 8 7 0
First data word
write | 0 | phase | node |
15 12 11 8 7 0

Second data word
read | value (high-order part) |
31 16
Third data word
read | value (low-order part) |
15 0

Description GetCurrentLoopValue is used to read the value of a node in one of the digital current loops. See the
product uset’s guide for more information on the location of each node in the current loop processing:
Though the data returned is signed 32 bits regardless of the node, the range and format vary depending
on the node, as follows:

Node Range Scaling Units
Reference 250215 100/2'4 % max current
Actual Current _215 0 215 100/2'4 % max current
Error 25 t0 215 100/2'4 % max current
Integrator Sum 2310 23 100/2'4 (% max current)*

current loop cycles

Integrator Contribution 23023} 100/2'4 % max current
Output 215 ¢t0 25 100/2'4 % max current
It Energy 28 t0 2°'-1 100/2%° % max energy

Magellan® Motion Control IC Programmer’'s Command Reference

37




O GetCurrentLoopValue (cont.)

38

11h

Description
(cont.)

Atlas

Restrictions

C-Motion API

VB-Motion API

see

All of the nodes have units of % maximum current, and most have scaling of 100/ 2" Thatis, a

value of 2'* corresponds to 100% maximum current. The range is extended to allow for overshoot

in excess of maximum peak current, and thus values can be more than 100% of the maximum

output current.

The Integrator Sum is a signed 32-bit number, with scaling of 100/ 2" That is, a current error of

100% maximum, present for 16 current loop cycles, will result in an integrator sum of

16%(100%)*2'*/100 = 2'%. Current loop cyles are not the same as position loop servo cycles. The

current loop runs at 20 kHz, regardless of the servo cycle time.

This command is relayed to any connected Atlas amplifier.

This command is only supported in products that include digital current control, and when the

current control mode is Phase A /B.

PMDresult PMDGetCurrentLoopValue (PMDAxisInterface axis intf,
PMDuint8 phase,
PMDuint8 node,
PMDint32* value)

MagellanAxis.CurrentLoopValue ([in] phase,
[in] node,
[out] value

Set/GetCurrentLoop (p. 111), Set/GetCurrentControlMode (p. 107)
Set/Get Current Foldback ( (p. 109)

Magellan® Motion Control IC Programmer’'s Command Reference




GetDriveFaultStatus 6Dh

Syntax
Motor Types

Arguments

Returned Data

Packet
Structure

Description

GetDriveFaultStatus axis

[ DC Brush | Brushless DC | Microstepping | Pulse & Direction |
Name Instance Encoding
axis Axis1 0
AXxis2 1
Axis3 2
Axis4 3
Type
status unsigned 16 bits see below

GetDriveFaultStatus
| 0 [ axis | 6Dh |
15 12 11 8 7 0
First data word

read | 0 | Status |
15 7 6 0

GetDriveFaultStatus reads the Drive Fault Status register, which contains a bitmap showing all hard
faults that have occurred since the Drive Fault Status register was last cleared. In the ION products, this
register is kept in non-volatile memory, so that a record of hard faults is retained even through power
cycles, which must be done upon any hard fault event.

The table below shows the bit definitions of the Drive Fault Status register.

Name Bit
Overcurrent Fault

Ground Fault

External Logic Fault

Atlas Operating Mode Mismatch

Internal Logic Fault

Overvoltage Fault

Undervoltage Fault

Atlas Disabled by /Enable Signal
Atlas Current Foldback
Overtemperature Fault (non-Atlas)
Atlas Detected SPI Checksum Error 10
Atlas Watchdog Timeout I
— (Reserved) 12
Disabled by ~PWMOutputDisable signal 13
Magellan Detected SPI Checksum Error 14
Atlas Motor Type Mismatch 15

O N([vn|n|Dh|W|N|[—|O

0

ION products enforce a “hard fault” for events 0, 1, 2, and 4, meaning that if one of these occur the
unit will shut down, and power must be cycled before it will accept any communication. Upon power-
up, GetDriveFaultStatus should be used to check which, if any, hard fault may have caused the previous
power cycle.  After querying the Drive Fault Status register, it should be cleared using
ClearDriveFaultStatus. If this is not done, the bits will be retined in non-volatile memory, which will
make it difficult to detect the cause of any subsequent hard faults.

Magellan® Motion Control IC Programmer’'s Command Reference

39




O GetDriveFaultStatus (cont.) 6Dh

For all other events, and for non-ION products, there is no non-volatile storage of the Drive Fault
Status register, and a power cycle is not required to recover from a fault.

Events 5 and 6 will not cause the system to shut down. Instead, they will cause the system to change
to the disabled state, and will cause the Bus Voltage Fault bit in GetEventStatus to be set. Normally,
the Drive Fault Status register does not need to be monitored. In the case of Bus Voltage Fault in
GetEventStatus, however, the Drive Fault Status register can be used to distinguish the error
between overvoltage and undervoltage. The Overvoltage Fault and Undervoltage Fault bits are
cleared upon power-up.

Event 13 indicates that motor output was disabled by the ~PWMOutputDisable signal, in which case

the DriveException bit will be set in the Event Status register. Not all products support this signal,
check you product uset's guide for more information.

Atlas This command is relayed to any connected Atlas amplifier, and the result combined with bits 14 and
15 from internal Magellan state to form the result.

The Atlas amplifier does not implement hard faults; events 3, 7, 9 and 11 will unconditionally cause
Atlas to disable output, and raise a Drive Exception event. The Drive Exception event is
transmitted to the Magellan using the Atlas SPI status word, which is received with every torque
command sent, and will cause the Magellan axis to disable output as well. Event 8 may similarly

disable output depending on the current foldback event action.

Events 10 and 14 are not handled by Magellan, but indicate a problem with SPI communication,

which may seriously affect Atlas amplifier operation.

Event 15 indicates that the Magellan motor type and an attached Atlas amplifier motor type are not
compatible. This bit may be cleared only by using SetMotorType.

Restrictions This command is not available in products without drive amplifier support.

C-Mntion API PMDresult PMDGetDriveFaultStatus (PMDAxisInterface axis intf,
PMDuintl6* status)

VB-Motion API Dim status as Short
status = MagellanAxis.DriveFaultStatus

see ClearDriveFaultStatus (p. 20)

SetMotorType (p. 144)
SetEventAction (p. 125)

40 Magellan® Motion Control IC Programmer’'s Command Reference




GetDriveStatus OEh

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Atlas

Restrictions

C-Motion API
VB-Motion API

see

GetDriveStatus axis

[ DC Brush | Brushless DC | Microstepping | Pulse & Direction |
Name Instance Encoding
axis Axis1 0
AXxis2 1
Axis3 2
Axis4 3
Type
status unsigned 16 bits see below
GetDriveStatus
| 0 | axis | 0Eh |
15 12 11 8 7 0
First Data Word
read | Status |
15 0

GetDriveStatus reads the Drive Status register for the specified axis. All of the bits in this status word
are set and cleared by the motion control IC. They are not settable or clearable by the host. The bits

represent states or conditions in the motion control IC that are of a transient nature.

Name Bit(s) Description

— 0 Reserved; not used; may be 0 or I.

In Foldback I Set to | when the unit is in the current foldback state—
the output current is limited by the foldback limit.

Overtemperature 2 Set to | when the overtemperature condition is
present.

Shunt active 3 The bus voltage limiting shunt PWM is active.

In Holding Set to | when the unit is in the holding current state—
the output current is limited by the holding current
limit.

Overvoltage 5 Set to | when the overvoltage condition is present.

Undervoltage 6 Set to | when the undervoltage condition is present.

Atlas Disabled 7 The attached Atlas amplifier is disabled by an inactive
/Enable signal.

— 8-11 Reserved; not used; may be 0 or |.

Output Clipped 12 Drive output is limited because it has reached 100%, or
the Drive PWM limit, or the current loop integrator
limit.

— 13, 14 Reserved; not used; may be 0 or |.

Atlas not connected 15 The output mode is Atlas, but SPI communication has

not been established.

This command does not require any additional Atlas communication, all of the required data is

transmitted in the Atlas SPI Status Word received when sending torque commands.

The bits available in this register depend upon the products. See the product uset’s guide.

PMDresult PMDGetDriveStatus (PMDAxisInterface axis intf,
PMDuintl6* status)

Dim status as Short
status = MagellanAxis.DriveStatus

Magellan® Motion Control IC Programmer’'s Command Reference

41




O GetDriveValue 710h

Motor Types [ DC Brush | Brushless DC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
node Bus Voltage 0
Temperature 1
Bus Current Supply 2
Bus Current Return 3
Returned data Type Range/Scaling
value signed or unsigned see below
16 bits
Packet GetDriveValue
Structure | 0 [ axis [ 70h |
15 12 11 8 7 0
First Data Word
write | node \
15 0
Second Data Word
read value \
15 0
Description GetDriveValue is used to read values associated with drive output or state, and enumerated by

node. Some of the functionality provided by GetDriveValue is duplicated by GetTemperature
and GetBusVoltage, however GetDriveValue is preferred for future use.

The following nodes are supported:

Bus Voltage is the most recent bus voltage reading from the axis, returned as an unsigned 16 bit

value. The scaling depends on the product and on the external bus voltage sensing circuit.

Temperature is the most recent temperature reading from temperature sensor monitoring axis,
returned as a signed 16 bit value. The scaling depends on the product and on the external
temperature sensing circuit. For MC58113, if the temperature limit set by SetDriveFaultParameter

is negative then the sense of the temperature is inverted by subtracting the measured value from
32768.

Bus Current Supply is the most recent reading from the bus current supply sensor, returned as an
unsigned 16 bit value. Scaling depends on the product and the external current sensing circuit.

Bus Current Return is the most recent current return reading computed from all leg current
readings and PWM duty cycles, returned as a signed 16 bit number. The scaling depends on the

product and on the external leg current sensing circuit; it is the same as the leg current scaling,
Restrictions GetDriveValue is currently supported only by MC58113 series motion control ICs.
C-Motion API PMDresult PMDGetDriveValue (PMDAxisInterface axis intf,
PMDuint8 node,

PMDuintl6 * value);

VB-Motion API MagellanAxis.DriveValue ([in] node,
[out] wvalue)

see GetTemperature (p. 55), GetBusVoltage (p. 31), SetDriveFaultParameter (p. 117)

42 Magellan® Motion Control IC Programmer’'s Command Reference




GetEventStatus 31h

Syntax GetEventStatus axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Returned data Type
status unsigned 16 bits see below
Packet GetEventStatus
Structure | 0 [ axis [ 31h |
15 12 11 8 7 0
Data
red O] [O] [ [ [ [ [ [ [ [ [ [ [ [ |
%5 14 13 12 M1 10 9o 8 7 6 5 4 3 2 1 0

Description GetEventStatus reads the Event Status register for the specified axis. All of the bits in this status word are
set by the motion control IC and cleared by the host. To clear these bits, use the ResetEventStatus
command. The following table shows the encoding of the data returned by this command.

Name Bit(s) Description

Motion Complete 0 Set to | when motion has completed.
SetMotionCompleteMode determines if this bit is based on the
trajectory generator position or the encoder position.

Wrap-around I Set to | when the actual (encoder) position has wrapped from
maximum allowed position to minimum, or vice versa.

Breakpoint | 2 Set to | when breakpoint | has been triggered.

Capture Received 3 Set to | when a position capture has occurred.

Motion Error 4 Set to | when a motion error has occurred.

Positive Limit 5 Set to | when the axis has entered a positive limit switch.

Negative Limit 6 Set to | when the axis has entered a negative limit switch.

Instruction Error 7 Set to | when an instruction error has occurred.

Disable 8 Set to | when “disable” due to user /Enable line has occurred.

Overtemperature Fault 9 Set to | when overtemperature condition has occurred.

Drive Exception 10 An drive event occurred causing output to be disabled. This bit is
used on ION products to indicate a bus voltage fault, and with an
attached Atlas amplifier to indicate any disabling drive event.

Commutation error I Set to | when a commutation error has occurred.

Current Foldback 12 Set to | when current foldback has occurred.

— 13 Reserved; not used; may be 0 or |.

Breakpoint 2 14 Set to | when breakpoint 2 has been triggered.

— 15 Reserved; not used; may be 0 or |.

Atlas This command does not requite any additional Atlas communication, all of the required data is

transmitted in the Atlas SPI Status Word received when sending torque commands.

In the case of Drive Exception, more precise information may be obtained by using the
GetDriveFaultStatus command. It should be noted that the Overtemperature event bit is not used for
Atlas axes.

Magellan® Motion Control IC Programmer’'s Command Reference

43




O GetEventStatus (cont.) 31h

Restrictions Bits 8, 9, 10, and 12 ate not implemented in products that do not include drive amplifier support.
In this case, they are reserved—may be 0 or 1.

C-Motion API PMDresult PMDGetEventStatus (PMDAxisInterface axis intf,
PMDuintlo* status)

VB-Motion API Dim status as Short
status = MagellanAxis.EventStatus

see GetActivityStatus (p. 28), GetSignalStatus (p. 53), GetDriveStatus (p. 41),
GetDriveFaultStatus (p. 39)

44 Magellan® Motion Control IC Programmer’'s Command Reference




GetFOCValue bAh

Syntax GetFOCValue axis loop node
Motor Types | | BrushlessDC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
loop Direct (D) 0
Quadrature (Q) 1
node Reference (D,Q) 0
Feedback (D,Q) 1
Error (D,Q) 2
Integrator Sum (D,Q) 3
— (Reserved) 4
Integrator Contribution (D,Q) 5
Output (D,Q) 6
FOC Output (Alpha,Beta) 7
Actual Current (A,B) 8
1%t Energy 10
Returned data Type Range/Scaling
value signed 32 bits see below
Packet GetFOCValue
Structure | 0 [ axis [ 5Ah |
15 12 11 8 7 0
First data word
write | 0 | loop | node |
15 12 11 8 7 0

Second data word
read | value (high-order part) |
31 16
Third data word
read | value (low-order part) |
15 0

Description GetFOCValue is used to read the value of a node of the FOC current control. See the product uset’s

guide for more information on the location of each node in the FOC current control algorithm.

Magellan® Motion Control IC Programmer’'s Command Reference




O GetFOCValue (cont.) bAh

Description Though the data returned is signed 32 bits regardless of the node, the range and format vary
(cont.) depending on the node, as follows:
Node Range Scaling Units
Reference (D,Q) 215025 100/2'4 % max current
Feedback (D,Q) 28¢5 28] 100/2'4 % max current
Error (D,Q) 25 t0 25| 100/2'4 % max current
Integrator Sum (D,Q) -2% 1o 231 100/2'* (% max current)*
current loop cycles
Integrator Contribution (D,Q) 23 t0 23} 100/2'4 % max current
Output (D,Q) -2 t0 2'5- 100/2" % PWM
FOC Output (Alpha,Beta) 25 t0 251 100/2'4 % PWM
Actual Current (A,B) 215 t0 25 100/2'4 % max current
It Energy -23't0 2% 100/2%° % max energy

Most of the nodes have units of % maximum cutrent, and most have a scaling of 100/ 2" That is,

a value of 21 corresponds to 100% maximum current. The range is extended to allow for overshoot
in excess of maximum peak current, and thus values can be more than 100% of the maximum

output current.

The Integrator Sum is a signed 32-bit number, with scaling of 100/2'. That is, a current of 100%
maximum, present for 16 current loop cycles, will result in an integrator sum of 16*(100%)*2'*/100

= 2'%, Current loop cycles are not the same as position loop servo cycles. The current loop runs at 20
kHz, regardless of the servo cycle time.

Atlas This command is relayed to an attached Atlas amplifier.

Restrictions This command is only supported in products that include digital current control, and when the
current control mode is set to FOC.

C-Mntion API PMDresult PMDGetFOCValue (PMDAxisInterface axis intf,
PMDuint8 loop,
PMDuint8 node,
PMDint32* wvalue)

VB-Motion API MagellanAxis.FOCValue ( [in] loop,
[in] node,
[out] value )

see Set/GetFOC (p. 131), Set/GetCurrentControlMode (p. 107)
Set/Get Current Foldback ( (p. 109)

46 Magellan® Motion Control IC Programmer’'s Command Reference




GetInstructionError Abh

Syntax
Motor Types
Arguments

Returned data

Packet
Structure

Description

GetInstructionError

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
None

Type Range
error unsigned 16 bits 0to11h

GetlInstructionError

| 0 [ A5h |
15 12 11 8 7 0
Data
read [ second error | first error |
15 8 7 0

GetlnstructionError returns the code for the first instruction error since the last read operation, and
then resets the error to zero (0). Generally, this command is issued only after the instruction error bit in
the Event Status register indicates there was an instruction error. It also resets the Instruction error bit

in the I/O status read word to zero (0).

The Atlas and MC58113 series products will return both the first and second errors after the last read
operation. This is especially helpful in debugging initialization commands executed at startup from non-
volatile RAM, since the first error is always a Processor reset (1). For other Magellan products the second

error field will always be zero.

Magellan® Motion Control IC Programmer’'s Command Reference

a7




O GetInstructionError (cont.) A5h

Description The error codes are encoded as defined below:

(cont'd)
Error Code Encoding
No error 0
Processor reset I
Invalid instruction 2
Invalid axis 3
Invalid parameter 4
Trace running 5
— (Reserved) 6
Block out of bounds 7
Trace buffer zero (0) 8
Bad serial checksum 9
— (Reserved) 10
Invalid negative value I
Invalid parameter change 12
Invalid move after event-triggered stop 13
Invalid move into limit 14
Invalid Operating Mode restore after event-triggered change 16
Invalid Operating Mode for command 17
Invalid register state for command 18
— (Reserved) 19
Command invalid without Atlas amplifier 20
Incorrect Atlas command checksum 21
Invalid Atlas command protocol 22
Invalid Atlas command timing 23
Invalid Atlas torque command detected 24
— (Reserved) 25
Atlas command invalid in flash mode 26

Atlas This command does not require any additional Atlas communication. In case a command error is

signaled by an Atlas amplifier during the processing of a Magellan command the Magellan
instruction error register will be set to the error code returned by Atlas. The error code is
maintained separately by the Atlas amplifier and may be cleared by reading directly from Atlas; it is
not reset by reading the Magellan instruction error code.

Restrictions

C-Motion API PMDresult PMDGetInstructionError (PMDAxisInterface axis intf,
PMDuintl6* error)

VB-Motion API Dim error as Short
error = MagellanObject.InstructionError

see GetEventStatus (p. 43), ResetEventStatus (p. 75)

48 Magellan® Motion Control IC Programmer’'s Command Reference




GetInterruptAxis

E1lh

Syntax
Motor Types
Arguments

Returned data

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

GetinterruptAxis
| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
None
Name Instance Encoding
mask None 0
Axis1 Mask 1
Axis2 Mask 2
Axis3 Mask 4
Axis4 Mask 8
GetlInterruptAxis
| 0 [ E1h |
15 8 7 0
Data
read | | mask |
15 4 3 0

GetlnterruptAxis returns a field that identifies all axes with pending interrupts. Axis numbers are

assigned to the low-order four bits of the returned word, with bits corresponding to interrupting axes

set to 1. If there are no pending interrupts, the returned word is zero (0). If any axis has a pending

interrupt, the /Hostlnterrupt signal will be in an active state.

This command is only useful for products with /HostInterrupt pin. When using CAN events for

interrupt event notification, the interrupting axis is sent as part of the CAN event.

PMDresult PMDGetInterruptAxis (PMDAxisInterface axis intf,

Dim mask as Short

PMDuintl6* mask)

mask = MagellanObject.InterruptAxis

Clearinterrupt (p. 21), Set/GetInterruptMask (p. 136)

Magellan® Motion Control IC Programmer’'s Command Reference

49




O GetPhaseCommand EAh

Syntax GetPhaseCommand axis phase
Motor Types | | BrushlessDC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
phase Phase A 0
Phase B 1
Phase C 2
Returned data Type Range Scaling Units
command signed 16 bits 2" t0 2151 100/2"® % output
Packet GetPhaseCommand
Structure | 0 axis | EAh |
15 12 1 8 7 0
First data word
write | 0 | phase |
15 2 1 0

Second data word
read | command |
15 0

Description GetPhaseCommand returns the value of the commutated phase command for phase A, B, or C of
the specified axis. These are the phase command values directly output to the current loop or motor
after commutation.

Scaling example: If a value of —4,489 is retrieved (EE77h) for a given axis and phase, then this
cotresponds to —4,489*%100/32,767 = —13.7% of full-scale output.
Restrictions Phase C is only valid when the motor type has been set for a 3-phase commutation.

This command has no meaning when current control mode is set to FOC whether or not the

current loops are enabled.

When the curtent control mode is set to Phase A /B current loops, the values are the inputs to the

current loops. When current loops are disabled, the value is the motor output command.

C-Motion API PMDresult PMDGetPhaseCommand (PMDAxisInterface axis intf,
PMDuintl6 phase,
PMDintl1l6* command)

VB-Motion API Dim command as Short
command = MagellanAxis.PhaseCommand ( phase )

see SetCurrentControlMode (p. 107)

50 Magellan® Motion Control IC Programmer’'s Command Reference




GetPositionError 99h

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

GetPositionError axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
error signed 32 bits —2% to 2311 unity counts
microsteps

GetPositionError
| 0 | axis | 99h |
15 12 11 8 7 0

First data word

read | error (high-order part) |
31 16

Second data word
read | error (low-order part) |
15 0

GetPositionError rcturns the position error of the specified axis. The error is the difference between
the actual position (encoder position) and the commanded position (instantaneous output of the
trajectory generator). When used with the motor type set to microstepping or pulse & direction, the
error is defined as the difference between the encoder position (represented in microsteps or steps) and

the commanded position (instantaneous output of the trajectory generator).

PMDresult PMDGetPositionError (PMDAxisInterface axis intf,
PMDint32* error)

Dim error as Long
error = MagellanAxis.PositionError

Set/GetPosition (p. 158), Set/GetPositionErrorLimit (p. 159)

Magellan® Motion Control IC Programmer’'s Command Reference

51




O GetPositionLoopValue H5h

Syntax GetPositionLoopValue axis node
Motor Types [ DC Brush | Brushless DC | |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
node Integrator Sum 0
Integrator Contribution 1
Derivative 2
Biquad1 Input 3
Biquad?2 Input 4
Returned data Type Range/Scaling
value signed 32 bits see below
Packet GetPositionLoopValue
Structure | 0 [ axis [ 55n |
15 12 1 8 7 0

First data word
write | node |
15 0
Second data word
read | value (high-order part) |
31 16
Third data word
read [ value (low-order part) |
15 0

Description GetPositionLoopValue is used to find the value of a node in the position loop. See the product
user’s guide for more information on the location of each node in the position loop processing.
Though the data returned is signed 32 bits regardless of the node, the range and format varies
depending on the node, as follows:

Node Range Scaling Units
Integrator Sum 2310 23 unity (counts or microsteps)*cycles
Integrator Contribution  _23' ¢o 23'_| 100*Kout/(23") % Output
Derivative 215025 unity (counts or microsteps)/cycles
Biquad! Input 25 t0 25| unity counts or microsteps
Biquad2 Input _2'5¢0 25 unity counts or microsteps
Restrictions
C-Motion API PMDresult PMDGetPositionLoopValue (PMDAxisInterface axis intf,

PMDuintl6 node,
PMDint32* value)

VB-Motion API Dim value as Long
value = MagellanAxis.PositionLoopValue ( node )

see Set/GetPositionLoop (p. 160)

52 Magellan® Motion Control IC Programmer’'s Command Reference




GetSignalStatus A4dh

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Atlas

Restrictions

GetSignalStatus axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type
see below unsigned 16 bits
GetSignalStatus
| 0 | axis | Adh |
15 12 11 8 7 0
Data
read[O] [ [ 0o | [ [ [ [ [ [ [ [ [ [ |

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

GetSignalStatus returns the contents of the Signal Status register for the specified axis. The Signal Status
register contains the value of the various hardware signals connected to each axis of the motion control
IC. The value read is combined with the Signal Sense register (see SetSignalSense (p. 172)) and then
returned to the user. For each bit in the Signal Sense register that is set to 1, the corresponding bit in the
GetSignalStatus command will be inverted. Therefore, a low signal will be read as 1, and a high signal
will be read as a 0. Conversely, for each bit in the Signal Sense register that is set to 0, the corresponding
bit in the GetSignalStatus command is not inverted. Therefore, a low signal will be read as 0, and a high

signal will be read as a 1.

All of the bits in the GetSignalStatus command are inputs, except for AxisOut and FaultOut. The value
read for these bits is equal to the value output by the AxisOut and FaultOut mechanisms. See
SetAxisOutMask (p. 87) and SetFaultMask (p. 127) for more information. The bit definitions are as

follows:

Description Bit Number Description Bit Number
Encoder A 0 Hall B 8

Encoder B | Hall C 9

Encoder Index 2 AxisOut 10

Capture Input 3 — (Reserved) 11-12

Positive Limit 4 /Enable In 13

Negative Limit 5 FaultOut 14

Axisln 6 — (Reserved) 15

Hall A 7

Note that the /Enable In and FaultOut signals are nof the Atlas signals. In order to read the Atlas amplifier
signal status the command must be directed to Atlas.

Depending on the product, some signals may not be present. See the product user’s guide. In ION
products, when the capture source is set to Index, the Encoder Index input will be present as both the
Encoder Index and the Capture Input bits. In MC58113 products the Capture Input bit is always used
for the Home signal, regardless of the capture source.

Magellan® Motion Control IC Programmer’'s Command Reference

53




O GetSignalStatus (cont.) A4dh

C-Mntion API PMDresult PMDGetSignalStatus (PMDAxisInterface axis intf,
PMDuintl6* status)

VB-Motion API Dim status as Short
status = MagellanAxis.SignalStatus

see GetActivityStatus (p. 28), GetEventStatus (p. 43), GetSignalSense (p. 172)

54 Magellan® Motion Control IC Programmer’'s Command Reference




GetTemperature 53h N
Syntax GetTemperature axis
Motor Types [ DC Brush [ Brushless DC [ Microstepping [ Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Returned Data Type Range Scaling
temperature  signed 16 bits ~ —25 to 2'°-1 product specific
Packet GetTemperature
Structure | 0 [ axis [ 53h |
15 12 11 8 7 0

Description

Atlas

Restrictions

C-Motion API

VB-Motion API

see

First data word

read | temperature |
15 0

GetTemperature gets the most recent temperature reading from the temperature sensor(s) monitoring

the axis. Consult specific product documentation for scaling information.
This command is relayed to an attached Atlas amplifier.

GetTemperature is only available in products equipped with temperature sensors. If axis has more than
one temperature sensoft, the temperature returned will be the average value of all sensor readings.

PMDresult PMDGetTemperature (PMDAxisInterface axis intf,
PMDintl6* temperature)

Dim temperature as Short
temperature = MagellanAxis.Temperature

Get/SetOvertemperatureLimit (p. 149)

Magellan® Motion Control IC Programmer’'s Command Reference 55




O GetTime 3Eh

Syntax GetTime
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments None
Returned data Name Type Range Scaling Units

time unsigned 32 bits 0 to 2% unity cycles
Packet GetTime
Structure | 0 [ 3Eh |

15 8 7 0

First data word
read | time (high-order part) |
31 16
Second data word
read | time (low-order part) |
15 0

Description GetTime returns the number of cycles which have occurred since the motion control IC was last
reset. The time per cycle is determined by SetSampleTime.

Restrictions Time stops advancing when no axes are enabled.

C-Motion API PMDresult PMDGetTime (PMDAxisInterface axis intf,
PMDuint32* time)

VB-Motion API Dim time as Long
time = MagellanObject.Time

see Set/GetSampleTime (p. 166)

56 Magellan® Motion Control IC Programmer’'s Command Reference




GetTraceCount

BBh

Syntax
Motor Types
Arguments

Returned data

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

GetTraceCount
| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
None
Name Type Range Scaling Units
count unsigned 32 bits 0 to 2% unity samples
GetTraceCount
| 0 [ BBh |
15 8 7 0

First data word

read | count (high-order part)

31

Second data word

read | count (low-order part)

15

GetTraceCount returns the number of points (variable values) stored in the trace buffer since the

beginning of the trace.

In non-MC58113 products, if the trace mode is set to “rolling” and the buffer wraps, GetTraceCount

returns the number of samples in the filled buffer.

PMDresult PMDGetTraceCount (PMDAxisInterface axis intf,
PMDuint32* count)

Dim count as Long

count = MagellanObject.TraceCount

ReadBuffer (p. 67), Set/GetTraceStart (p. 182), Set/GetTraceStop (p. 185),

Set/GetBufferLength (p. 96)

Magellan® Motion Control IC Programmer’'s Command Reference

57




O GetTraceStatus

BAh

Syntax GetTraceStatus
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments None
Returned data Name Type
see below unsigned 16 bits
Packet GetTraceStatus
Structure | 0 [ BAh |
15 8 7 0
Data
read | 0 | 0 | [ 1 |
15 9 8 3 2 1 0
Description GetTraceStatus returns the trace status. The definitions of the individual status bits are as follows:

Name Bit Number Description

Wrap Mode 0 Set to 0 when trace is in one-time mode, | when in rolling mode.

Activity | Set to | when trace is active (currently tracing), O if trace not
active.

Data Wrap 2 Set to | when trace has wrapped, 0 if it has not wrapped. If 0, the
buffer has not yet been filled, and all recorded data is intact. If |,
the trace has wrapped to the beginning of the buffer; any previous
data may have been overwritten if not explicitly retrieved by the
host using the ReadBuffer command while the trace is active.

— 3-7 — (Reserved)

Set to 0 when in Internal Trigger mode, | when in External Trigger
mode. Set SetTraceMode (p. 179) for explanation.

Trigger Mode 8

— 9-15 — (Reserved)

Restrictions

C-Motion API PMDresult PMDGetTraceStatus (PMDAxisInterface axis intf,
PMDuintl6é6* status)
VB-Motion API Dim status as Short
status = MagellanObject.TraceStatus
see Set/GetTraceStart (p. 182), Set/GetTraceMode (p. 179)

58 Magellan® Motion Control IC Programmer’'s Command Reference




GetTraceValue 28h

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

C-Motion API

VB-Motion API

see

GetTraceValue variablelD

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Type Encoding
variablelD unsigned 8 bit see below
Value Type Range/Scaling
32 bit see below

GetTraceValue

| 0 | 28h |
15 8 7 0

write | 0 | |
15 8 7 0

read | Value (high order part) |
15 0

read | 15 Value (low order part) ~ |

GetTraceValue returns a single sample of any trace variable, without using the trace mechanism. The
variableID encoding is the same as for SetTraceVariable. The use of this command does not change

or depend upon any of the trace parametets.

PMDresult PMDGetTraceValue (PMDAxisInterface axis intf,
PMDuint8 wvariable, PMDuint32 *value)

MagellanAxis.TraceValue ([in] variable
[out] wvalue)

PMDSetTraceVariable (p. 188)

Magellan® Motion Control IC Programmer’'s Command Reference

59




O GetVersion

8Fh

Syntax
Motor Types
Arguments

Returned data

Packet
Structure

Description

Restrictions

60

GetVersion
| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
None
Name Type
version unsigned 32 bits
GetVersion
| 0 | 8Fh |
15 8 7 0
First data word
read | product family | motortype [ numberof axes | special | # chips |
31 28 27 24 23 20 19 18 17 16
Second data word
product major
read customization code version | version minor version
15 8 7 6 5 4 3 0

GetVersion returns product information encoded as shown in the preceding packet structure

diagram. Individual data fields are encoded as defined in the following table.

Name Description Encoding
product family Navigator 2
Pilot 3
Magellan 5
ION 9
motor type Servo |
Brushless 3
Microstepping 4
Pulse & Direction 5
All Motor Types 8
ION-Any Motor Type 9
number of axes Maximum number of supported axes | to 15
special (Reserved) 0to3
# chips 0to3
customization code None 0
Other | to 255
product version 0to3
major s/w version Oto3
minor s/w version Oto I5

As a special case, when the number of chips field is zero, the number of axes field should be

interpreted as a sub-product specification. This scheme is used for the MC58113 seties motion

control ICs, which

use a number of axes/sub-product field of 1. For example, the version number

returned by an MC58113 processor version 1.0 is 0x58100010.

Note that in the C-Motion function PMDGetVersion, the special attributes value and the chip

count values are combined and returned in a single parameter (special and chip count).

Chip count is encoded in bits 0-1 of this value; special is encoded in bits 2-3. Likewise for the

major parameter.

in bits 2-3.

The major version is encoded in bits 0-1 and the product version is encoded

Magellan® Motion Control IC Programmer’'s Command Reference




GetVersion (cont.)

8Fh

C-Motion API PMDresult PMDGetVersion (PMDAxisInterface axis intf,

PMDuintlé* family,

PMDuintl6* motorType,

PMDuintl6* numberAxes,

PMDuintlé* special and chip count,
PMDuintl6* custom,

PMDuintl6* major,

PMDuintl6* minor)

VB-Motion API Dim version as Long
version = MagellanObject.Version

see

Magellan® Motion Control IC Programmer’'s Command Reference

61




O InitializePhase 71Ah

62

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Restrictions

C-Motion API
VB-Motion API

see

InitializePhase axis

| | BrushlessDC | |

Name Instance Encoding
axis Axis1 0

Axis2 1

Axis3 2

Axis4 3
None

InitializePhase
| 0 | axis | 7Ah |
15 12 1 8 7 0

InitializePhase initializes the phase angle for the specified axis using the mode (Hall-based or
algorithmic) specified by the SetPhaselnitializationMode command.

Warning: If the phase initialization mode has been set to algorithmic, then, after this command
is sent, the motor may suddenly move in an uncontrolled manner.

PMDresult PMDInitializePhase (PMDAxisInterface axis intf)
MagellanAxis.InitializePhase ()

GetPhaseCommand (p. 50), Set/GetCommutationMode (p. 104)

Magellan® Motion Control IC Programmer’'s Command Reference




MultiUpdate 5Bh yN

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

MultiUpdate mask

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Instance Encoding
mask None 0
Axis1 Mask 1
Axis2 Mask 2
Axis3 Mask 4
Axis4 Mask 8
None
MultiUpdate
| 0 | 5Bh |
15 8 7 0
Data
write | 0 | mask |
15 4 3 0

MultiUpdate causes an update to occur on all axes whose cortesponding bit is set to 1 in the mask argument.
After this command is executed, all axes which are selected using the mask will perform an Update. The
paramater groups that are copied from their buffered versions into the corresponding run-time registers is
determined by the update mask of each axis, as shown in the table below.

Group Command/Parameter

Trajectory Acceleration
Deceleration
Gear Ratio
Jerk
Position
Profile Mode
Stop Mode
Velocity
ClearPositionError

Position Servo Derivative Time
Integrator Sum Limit
Kaff
Kd
Ki
Kp
Kvff
Kout
Motor Command

Current Loops Integrator Sum Limit
Ki
Kp

Each axis will be updated in turn, from the lowest numbered to the highest. If an error occurs during
the update of an axis, for example a move into an active limit switch, then that update will be aborted,
the error code returned, and no higher-numbered axes will be updated. The InstructionError bit of the

event status register for each axis may be tested to discover which axis had an update failure.

Magellan® Motion Control IC Programmer’'s Command Reference 63




O MultiUpdate (cont.) bBh

64

Atlas

Restrictions

C-Motion API

VB-Motion API

see

This command does not require any additional Atlas communication. It may cause an Atlas update
by using the update bit in the Atlas torque command, see A#as Digital Amplifier Complete Technical

Reference for more information.

PMDresult PMDMultiUpdate (PMDAxisInterface axis intf,
PMDuintl6 mask)

MagellanObject.MultiUpdate( [in] mask )

GetEventStatus (p. 43), Update (p. 197), Set/GetUpdateMask (p. 193)

Magellan® Motion Control IC Programmer’'s Command Reference




NoOperation

00h

Syntax

Motor Types
Arguments
Returned data

Packet
Structure

Description
Restrictions
C-Motion API
VB-Motion API

see

NoOperation

| DC Brush

Brushless DC

Microstepping

| Pulse & Direction

None

None

NoOperation

00h

15

8 7

The NoOperation command has no effect on the motion control IC.

PMDresult PMDNoOperation (PMDAxisInterface axis intf)

MagellanObject.NoOperation ()

Magellan® Motion Control IC Programmer’'s Command Reference

65




O ReadAnalog EFh

Syntax ReadAnalog port/D
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Type Range Scaling Units
portlD unsigned 16 bits Oto7 unity -
Returned data Type Range Scaling Units
value unsigned 16 bits 0to2'%-1  100/2'® % input
Packet ReadAnalog
Structure | 0 [ EFh |
15 8 7 0
First data word
write | 0 | portlD |
15 3 2 0
Second data word
read | value |
15 0
Description ReadAnalog returns a 16-bit value representing the voltage presented to the specified analog input.

See the product user’s guide for more information on analog input and scaling.
Restrictions

C-Motion API PMDresult PMDReadAnalog (PMDAxisInterface axis intf, PMDuintl6é portID,
PMDuintleée* wvalue)

VB-Motion API Dim value as Short

value = MagellanObject.Analog( portID )

see

66 Magellan® Motion Control IC Programmer’'s Command Reference




ReadBuffer

C9h

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

ReadBuffer bufferID
| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Type Range
bufferlD unsigned 16 bits 0to31
Type Range
data signed 32 bits —2%" to 2311
ReadBuffer
| 0 [ Coh |
15 8 7 0
First data word
write | 0 | bufferlD |
15 5 4 0

Second data word
read | data (high-order part) |
31 16
Third data word
read | data (low-order part) |
15 0

ReadBuffer returns the 32-bit contents of the location pointed to by the read buffer index in the
specified buffer. After the contents have been read, the read index is incremented by 1. If the result is
equal to the buffer length (set by SetBufferLength), the index is reset to zero (0). The read index for

buffer zero is automatically changed at the completion of a trace when in rolling trace mode.

PMDresult PMDReadBufferl6é (PMDAxisInterface axis intf, PMDuintlé6 bufferID,
PMDint32* data)

Dim data as Long
Data = MagellanObject.ReadBufferl6( bufferID )

Set/GetBufferReadlndex (p. 98), Set/GetBufferStart (p. 99), Set/GetBufferLength (p. 96)

Magellan® Motion Control IC Programmer’'s Command Reference

67




O ReadBuffer16 CDh

Syntax ReadBuffer16 bufferID
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Type Range
bufferlD unsigned 16 bits 0 to 31
Returned data Type Range
data signed 16 bits —2'5 to 2151
Packet ReadBuffer
Structure | 0 [ CDh |
15 8 7 0
First data word
write | 0 | bufferlD |
15 5 4 0
Second data word
read | data |
31 16
Description ReadBuffer16 returns the 16-bit contents of the location pointed to by the read buffer index in the

specified buffer. After the contents have been read, the read index is incremented by 1. If the result
is equal to the buffer length (set by SetBufferLength), the index is reset to zero (0). This command
is intended to read from a buffer located in non-volatile RAM, which has a 16-bit word size.
ReadBuffer should be used for all other buffers.

Restrictions This command is only available on products that support non-volatile RAM.

C-Motion API PMDresult PMDReadBuffer (PMDAxisInterface axis intf, PMDuintl6 bufferID,
PMDint32* data)

VB-Motion API Dim data as Long
Data = MagellanObject.ReadBuffer ( bufferID )

see Set/GetBufferReadIndex (p. 98), WriteBuffer (p. 198), Set/GetBufferStart (p. 99),
Set/GetBufferLength (p. 96)

68 Magellan® Motion Control IC Programmer’'s Command Reference




ReadlO 83h

Syntax ReadlO address
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Type Range
address unsigned 16 bits 0 to 255
Returned data Type Range
data unsigned 16 bits 0 to 2161
Packet ReadlO
Structure | 0 [ 83h |
15 8 7 0
First data word
write | 0 | address |
15 8 7 0
Second data word
read | data |
15 0
Description ReadlO reads one 16-bit word of data from the device at address. The address is an offset from location

1000h of the motion control IC's peripheral device address space.

The format and interpretation of the 16-bit data word are dependent on the user-defined device being
addressed. User-defined I/O can be used to implement a number of features, including additional
patallel I/O, flash memory for non-volatile configuration information storage, ot display devices such

as LED arrays.
Restrictions This command is not available in products without a parallel I/O port.

C-Motion API PMDresult PMDReadIO (PMDAxisInterface axis intf, PMDuintl6 address,
PMDuintle6* data);

VB-Motion API Dim data as Short
data = MagellanObject.IO( address )

see WritelO (p. 199)

Magellan® Motion Control IC Programmer’'s Command Reference




O Reset

70

39h

Syntax

Motor Types
Arguments
Returned data

Packet
Structure

Description

Reset
| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
None
None
Reset
| 0 | 3%h |
15 8 7 0

Reset restores the motion control IC to its initial condition, setting all motion control IC variables to
their default values. Most variables are motor-type independent; however several default values
depend upon the configured motor type of the axis. Some of the default values also depend on the
state of Magellan pin OutputMode0 when power is applied, if this pin is grounded, Magellan will be
in an “Atlas-compatible” state, if it is floating, “backwards-compatible.” MC58113 series products

always behave in an Atlas-compatible way. The motor-type independent values are listed here.

Default Value Buffered

Breakpoints and Interrupts

Breakpoint | 0 NO
Breakpoint 2 0 NO
Breakpoint Value | 0 NO
Breakpoint Value 2 0 NO
Breakpoint Update Mask | 0Bh NO
Breakpoint Update Mask 2 0Bh NO
Interrupt Mask 0 NO
Commutation

Commutation Mode motor dependent NO
Phase Angle 0 NO
Phase Counts motor dependent NO
Phase Offset -1 NO
Phase Prescale 0 NO
Phase Initialize Mode 0 NO
Phase Initialize Time 0 NO
Phase Correction Mode motor dependent NO

Current Control

Currrent Control Mode 0 YES-Current Loop
Current Loop Kp (both A and B loops) 0 YES-Current Loop
Current Loop Ki (both A and B loops) 0 YES-Current Loop
Current Loop Integrator Sum Limit 0 YES-Current Loop
(both A and B loops)

FOC Kp (both D and Q loops) 0 YES-Current Loop
FOC Ki (both D and Q loops) 0 YES-Current Loop
FOC Integrator Sum Limit 0 YES-Current Loop
Holding Motor Limit 32767 NO

Holding Delay motor dependent NO

Magellan® Motion Control IC Programmer’'s Command Reference




Reset (cont.)

39h

Default Value Buffered
Digital Servo Filter
Position Error Limit 65535 NO
Position Loop Biquad Coeffs AllO YES-PositionLoop
Position Loop Biquad Enables Both 0 YES-Position Loop
Position Loop Kvff 0 YES-Position Loop
Position Loop Kaff 0 YES-Position Loop
Position Loop Kp 0 YES-Position Loop
Position Loop Ki 0 YES-Position Loop
Position Loop Kd 0 YES-Position Loop
Position Loop Integrator Sum Limit 0 YES-Position Loop
Position Loop Derivative Time | YES-Position Loop
Position Loop Kout 65535 YES-Position Loop
Motor Limit 32767 NO
Motor Bias 0 NO
Motor Command 0 YES-Position Loop
Auxiliary Encoder Source 0 NO
Encoder
Actual Position 0 NO
Actual Position Units motor dependent NO
Capture Source 0 NO
Encoder Modulus 0 NO
Encoder Source motor dependent NO
Encoder To Step Ratio 00010001h NO
Motor Output
Operating Mode 0033h (Magellan backwards-compatible) NO

0001h (ION, Magellan Atlas-compatible)
Active Operating Mode 0033h (Magellan backwards-compatible) NO

0001h (ION, Magellan Atlas-compatible)
Output Mode motor dependent NO
Motor Type product dependent NO
PWM Frequency motor dependent NO
Step Range | NO
Position Servo Loop Control
Motion Complete Mode 0 NO
Sample Time see Notes NO
Settle Time 0 NO
Settle Window 0 NO
Tracking Window 0 NO
Profile Generation
Acceleration 0 YES-Trajectory
Deceleration 0 YES-Trajectory
Gear Master 0 NO
Gear Ratio 0 YES-Trajectory
Jerk 0 YES-Trajectory
Position 0 YES-Trajectory
Profile Mode 0 YES-Trajectory
Start Velocity 0 NO
Stop Mode 0 YES-Trajectory
Velocity 0 YES-Trajectory

Magellan® Motion Control IC Programmer’'s Command Reference

71




O Reset (cont.) 39h

Default Value Buffered
RAM Buffer
Buffer Length 0-Magellan NO
0180h-ION
Buffer Read Index 0 NO
Buffer Start 0 NO
Buffer Write Index 0 NO
Safety
Positive Limit Event Action 8 NO
Negative Limit Event Action 8 NO
Motion Error Event Action motor dependent NO
Current Foldback Event Action 7 NO
OvervoltageThreshold see specific product manual NO
Undervoltage Threshold see specific product manual NO
OvertemperatureThreshold see specific product manual NO
FaultOut Mask 0600h NO
Continuous Current Limit see specific product manual
Energy Limit see specific product manual
Status Registers and AxisOut Indicator
AxisOut Source Axis 0 NO
AxisOut Register 0 NO
AxisOut Selection Mask 0 NO
AxisOut Sense Mask 0 NO
Signal Sense motor dependent NO
Traces
Trace Mode 0 NO
Trace Period | NO
Trace Start 0 NO
Trace Stop 0 NO
Trace Variables allare 0 NO
Miscellaneous
Update Mask 0Bh NO
CAN Mode CO000h (see Notes) NO
Serial Port Mode 0004h (see Notes) NO

72 Magellan® Motion Control IC Programmer’'s Command Reference




Reset (cont.)

39h

Notes

Atlas

Restrictions

The motor-type dependent default values are listed in the following tables.

Brushless DC

Brushless DC

Variable DC Brush (3 phase) (2 phase)
Actual Position Units 0 0 0
Commutation Mode - 0 0
Encoder Source 0 0 0
Motion Error Event Action 5 5 5
Output Mode [-Magellan 2 2
2-ION
10-MC581 13
Phase Correction Mode - | |
PWM Frequency (kHz) 20 20 20
SPI Mode 0 - -
Phase Counts - I |
Holding Delay - - -
Signal Sense 0 (backwards- 0 (backwards- 0
compatible), compatible), 0800h
0800h (Atlas- (Atlas-compatible)
compatible) 0 (MC58113)
Microstepping Mlicrostepping Pulse &
Variable (3 phase) (2 phase) Direction
Actual Position Units | | |
Commutation Mode 0 0 -
Encoder Source 2 2 3
Motion Error Event Action 0 0 0
Output Mode 2 I-Magellan -
2-ION
Phase Correction Mode - - -
PWM Frequency (kHz) 20 80-Magellan -
20-ION
20-MC58113
SPI Mode - - -
Phase Counts 256 256 -
Holding Delay 32767 32767 20
Signal Sense 0 0 0800h

All axes supported by the motion control IC are enabled at reset.

In some products, CAN Mode and Serial Port Mode defaults are defined at reset by a parallel bus read.
In ION products, the reset defaults for CAN Mode and the Serial Port Mode used for RS485 can be

over-ridden using the SetDefault command. See the ION Digital Drive User’s Manual.

See Set/GetSampleTime (p. 166) for more information regarding SampleTime.

The Magellan reset command does 7o cause any attached Atlas amplifiers to be reset. When Magellan
re-connects to any such Atlas amplifiers it will check their motor types, set their operating mode, and set

their current foldback event actions.

The typical time before the device is ready for communication after a reset is 20ms for Magellan

products, and 100ms for ION products.

Magellan® Motion Control IC Programmer’'s Command Reference

73




O Reset (cont.) 39h

The MC55110 and the MC58110 have a maximum Step Range of 100 ksteps/sec, which cannot be
changed.

Not all of the listed variables are available on all products. See the product user’s guide.

C-Motion API PMDresult PMDReset (PMDAxisInterface axis intf)
VB-Motion API MagellanObject.Reset ()
see SetDefault (p. 114)

74 Magellan® Motion Control IC Programmer’'s Command Reference




ResetEventStatus 34h

Syntax
Motor Types

Arguments

Returned data

Packet
Structure

Description

Atlas

Restrictions

ResetEventStatus axis mask

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
AXxis2 1
Axis3 2
Axis4 3
mask Motion Complete FFFEh
Wrap-around FFFDh
Breakpoint 1 FFFBh
Capture Received FFF7h
Motion Error FFEFh
Positive Limit FFDFh
Negative Limit FFBFh
Instruction Error FF7Fh
Disable FEFFh
Overtemperature Fault FDFFh
Drive Exception FBFFh
Commutation Error F7FFh
Current Foldback EFFFh
Breakpoint 2 BFFFh
None
ResetEventStatus
| 0 axis | 34h |
15 12 1 8 7 0
Data
write | mask |
15 0

ResetEventStatus clears (sets to 0), for the specified axis, each bit in the Event Status register that has
a value of 0 in the mask sent with this command. All other Event Status register bits (bits that have a
mask value of 1) are unaffected.

Events that cause changes in operating mode or trajectory require, in general, that the corresponding bit
in Event Status be cleared prior to returning to operation. That is, priot to restoring the operating mode
(in cases where the event caused a change in it) or prior to performing another trajectory move (in cases
where the event caused a trajectory stop). The one exception to this is Motion Error, which is not required
to be cleared if the event action for it includes disabling of the position loop.

When clearing bits 10 (Drive Exception), or 12 (Current Foldback), this command will be sent to an
attached Atlas amplifier before being applied to the local Magellan register.

Note that bit 9 (Overtemperature Fault) is not used for Atlas axes.

Not all bits in ResetEventStatus are supported in some products. See the product user’s manual.

Magellan® Motion Control IC Programmer’'s Command Reference

75




O ResetEventStatus (cont.) 34h

C-Mntion API PMDresult PMDResetEventStatus (PMDAxisInterface axis intf,
PMDuintl6 status)

VB-Motion API MagellanAxis.ResetEventStatus ( mask )

see GetEventStatus (p. 43)

76 Magellan® Motion Control IC Programmer’'s Command Reference




RestoreOperatingMode 2Eh

Syntax
Motor Types

Arguments

Packet
Structure

Description

Atlas

Restrictions

C-Motion API
VB-Motion API

see

RestoreOperatingMode axis

[ DC Brush [ Brushless DC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
RestoreOperatingMode
| 0 | axis | 2En |
15 12 1M 8 7 0

RestoreOperatingMode is used to command the axis to return to its static operating mode. It should
be used when the active operating mode has changed due to actions taken from safety events or other
programmed events. Calling RestoreOperatingMode will re-enable all loops that were disabled as a

result of events.

This command will be sent to an attached Atlas amplifier before being applied to the local Magellan
register.

Before using RestoreOperatingMode to return to the static operating mode, the event status bits should
all be cleared. If a bit in event status that caused a change in operating mode is not cleared, this command
will return an error. An exception to this is Motion Error, which does not have to be cleared prior to

restoring the operating mode.

Though RestoreOperatingMode will re-enable the trajectory generator (if it was disabled as a result of
an event action), it will not resume a move. This must be done through an Update or MultiUpdate.

PMDresult PMDRestoreOperatingMode (PMDAxisInterface axis intf)

MagellanAxis.RestoreOperatingMode ()

GetActiveOperatingMode (p. 27), Set/GetOperatingMode (p. 146), Set/GetEventAction (p. 125),
Set/GetBreakpoint (p. 89)

Magellan® Motion Control IC Programmer’'s Command Reference

77




O SetAcceleration

huffered 90h

GetAcceleration 4Ch
Syntax SetAcceleration axis acceleration
GetAcceleration axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
AXis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
acceleration  unsigned 32 bits 0to2%-1 1/2' counts/cycle?
microsteps/cycle?
Packet SetAcceleration
Structure | 0 [ axis | 90h |
15 12 11 8 7 0
First data word
write [ acceleration (high-order part) |
31 16
Second data word
write | acceleration (low-order part) |
15 0
GetAcceleration
| 0 | axis | 4Ch |
15 12 11 8 7 0
First data word
read | acceleration (high-order part) |
31 16
Second data word
read | acceleration (low-order part) |
15 0
Description SetAcceleration loads the maximum acceleration buffer register for the specified axis. This

78

command is used with the Trapezoidal, Velocity Contouring, and S-curve profiling modes.

GetAcceleration reads the maximum acceleration buffer register.

Scaling example: To load a value of 1.750 counts/cycle’, multiply by 65,536 (given 114,688) and
load the resultant number as a 32-bit number, giving 0001 in the high word and C000h in the low

word. Values returned by GetAcceleration must correspondingly be divided by 65,536 to convert

to units of counts/cycle” or steps/cycle.

Magellan® Motion Control IC Programmer’'s Command Reference




SetAcceleration (cont.) buffered 90h
GetAcceleration 4Ch

Restrictions

C-Motion API

VB-Motion API

see

SetAcceleration may not be issued while an axis is in motion with the S-curve profile.
SetAcceleration is not valid in Electronic Gear profile mode.

SetAcceleration is a buffered command. The value set using this command will not take effect until the
next Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

PMDresult PMDSetAcceleration (PMDAxisInterface axis intf,
PMDuint32 acceleration)

PMDresult PMDGetAcceleration (PMDAxisInterface axis intf,
PMDuint32* acceleration)

Dim acceleration as Long
MagellanAxis.Acceleration = acceleration
acceleration = MagellanAxis.Acceleration

Set/GetDeceleration (p. 113), Set/Getjerk (p. 138), Set/GetPosition (p. 158),
Set/GetVelocity (p. 195), MultiUpdate (p. 63), Update (p. 197)

Magellan® Motion Control IC Programmer’'s Command Reference

79




SetActualPosition 4Dh

GetActualPosition 37h
A

Syntax SetActualPosition axis position
GetActualPosition axis

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
position signed 32 bits -23" to 2311 unity counts
microsteps
Packet SetActualPosition
Structure | 0 | axis | 4Dh |
15 12 1 8 7 0

First data word
write [ position (high-order part) |
31 16
Second data word
write | position (low-order part) |
15 0
GetActualPosition
| 0 | axis | 37h |
15 12 11 8 7 0
First data word
read | position (high-order part) |
31 16
Second data word
read | position (low-order part) |
15 0

Description SetActualPosition loads the position register (encoder position) for the specified axis. At the same
time, the commanded position is replaced by the loaded value minus the position error. This
prevents a servo “bump” when the new axis position is established. The destination position (see
SetPosition (p. 158)) is also modified by this amount so that no trajectory motion will occur when
the Update instruction is issued. In effect, this instruction establishes a new reference position
from which subsequent positions can be calculated. It is commonly used to set a known reference
position after a homing procedure.

Note: For axes configured as pulse & direction or microstepping motor types, actual position units
determines if the position is specified and returned in units of counts or steps. Additionally, for
these motor types, the position error is zeroed when the SetActualPosition command is sent.
SetActualPosition takes effect immediately, it is not buffered.

GetActualPosition reads the contents of the encoder’s actual position register. This value will be
accurate to within one cycle (as determined by Set/GetSampleTime).

Restrictions

C-Motion API PMDresult PMDSetActualPosition (PMDAxisInterface axis intf,
PMDint32 position)

PMDresult PMDGetActualPosition (PMDAxisInterface axis intf,
PMDint32* position)

80 Magellan® Motion Control IC Programmer’'s Command Reference




SetActualPosition (cont.) 4Dh
GetActualPosition 37h

VB-Motion API Dim position as Long
MagellanAxis.ActualPosition = position
position = MagellanAxis.ActualPosition

see GetPositionError (p. 51), Set/GetActualPositionUnits (p. 82), AdjustActualPosition (p. 18)

Magellan® Motion Control IC Programmer’'s Command Reference

81




SetActualPositionUnits BEh

GetActualPositionUnits BFh
A

Syntax SetActualPositionUnits axis mode
GetActualPositionUnits axis

Motor Types | | | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
mode Counts 0
Steps 1
Packet SetActualPositionUnits
Structure | 0 axis | BEh |
15 12 11 8 7 0
Data
write | 0 | mode |
15 1 0

GetActualPositionUnits

| 0 axis | BFh |
15 12 1 8 7 0
Data
read | 0 | mode |
15 1 0
Description SetActualPositionUnits  determines the units wused by the Set/GetActualPosition,

AdjustActualPosition and GetCaptureValue for the specified axis. It also affects the trace variable
Actual Position. When set to Counts, position units are in encoder counts. When set to Steps, position
units are in steps/microsteps. The step position is calculated using the ratio as set by the
SetEncoderToStepRatio command.

GetActualPositionUnits returns the position units for the specified axis.
Restrictions The trace variable, capture value, is not affected by this command. The value is always in counts.

C-Motion API PMDresult PMDSetActualPositionUnits (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetActualPositionUnits (PMDAxisInterface axis intf,
PMDuintl6* mode)

VB-Motion API Dim mode as Short
MagellanAxis.ActualPositionUnits = mode
mode = MagellanAxis.ActualPositionUnits

see Set/GetActualPosition (p. 80), Set/GetEncoderToStepRatio (p. 124), AdjustActualPosition (p.
18), GetCaptureValue (p. 32), Set/GetTraceVariable (p. 188)

82 Magellan® Motion Control IC Programmer’'s Command Reference




SetAnalogCalibration
GetAnalogCalibration

29h
2Ah

Syntax SetAnalogCalibration axis channel offset
GetAnalogCalibration axis channel
Motor Types | DC Brush | BrushlessDC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
channel current leg A 0
current leg B 1
current leg C 2
current leg D 3
Type Range Scaling Units
offset signed 16 bits 2" to 21 100/2'" % input
Packet SetAnalogCalibration
Structure | axis [ 29h |
15 12 11 8 7 0
First data word
write | channel |
15 0
Second data word
write | offset |
15 0
GetAnalogCalibration
| axis | 2Ah |
15 12 11 8 7 0
write | channel |
15 0
read | offset |
15 0

Description

The SetAnalogCalibration command sets the offset applied to the specified analog input channel, to

compensate for the vagaries of external amplification circuitry. The offset is subtracted from the raw

analog reading, as returned by the ReadAnalog command, before any scaling is applied.

It is frequently more convenient to use the CalibrateAnalog command than to compute the apropriate

offsets.

GetAnalogCalibration retrieves the values set by SetAnalogCalibration.

Magellan® Motion Control IC Programmer’'s Command Reference

83




29h

SetAnalogCalibration (cont.)
2Ah

GetAnalogCalibration
: gCalibrati

This command is supported only by MC58113 series products. Not all analog channels have adjustable

Restrictions
offsets, consult product-specific documentation for more information.

C-Motion API PMDresult PMDSetAnalogCalibration (PMDAxisInterface axis intf,
PMDuintl6 channel,
PMDintleo offset);
PMDresult PMDGetAnalogCalibration (PMDAxisInterface axis intf,
PMDuintl6 channel,
PMDintl6 *offset);

[in] channel, [in] offset )

VB-Motion API MagellanAxis.AnalogCalibrationSet (
[out] offset )

MagellanAxis.AnalogCalibrationGet( [in] channel,

see ReadAnalog (p. 66), CalibrateAnalog (p. 19)

Magellan® Motion Control IC Programmer’'s Command Reference

84




SetAuxiliaryEncoderSource 08h
GetAuxiliaryEncoderSource 09h

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

SetAuxiliaryEncoderSource axis mode auxiliaryAxis
GetAuxiliaryEncoderSource axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
mode None 0
Quadrature 1
Pulse & Direction 2
auxiliaryAxis  Axis1 0
Axis2 1
Axis3 2
Axis4 3
SetAuxiliaryEncoderSource
| 0 [ axis [ 08h |
15 12 11 8 7 0
Data
write | 0 | mode | 0 | auxiliaryAxis |
15 9 8 7 2 1 0
GetAuxiliaryEncoderSource
| 0 | axis | 09h |
15 12 1 8 7 0
Data
read | 0 | mode | 0 | auxiliaryAxis |
15 9 8 7 2 1 0

SetAuxiliaryEncoderSource controls the motion control IC’s dual encoder loop feature. The mode
either disables or specifies the format for the secondary encoder loop for axis. The auxilaryAxis selects
which axis encoder input is to be interpreted as the damping term (Kd) of the servo equation for axis.
To determine the actual position of the auxiliary encodet, use GetActualPosition(auxiliaryAxis). The
auxiliary axis encoder input is used for commutation of brushless DC motors. The SetPhaseOffset,
SetPhaseAngle, and SetPhaseCounts commands should still be applied to the main axis, even when

dual encoder loop is enabled.

To avoid a potentially unstable operating condition in dual loop mode, the auxiliary encoder should have
resolution greater than or equal to that of the main encoder. Not all products support pulse & direction

input.

PMDresult PMDSetAuxiliaryEncoderSource (PMDAxisInterface axis intf,
PMDuint8 mode,
PMDAxis auxiliaryAxis)
PMDresult PMDGetAuxiliaryEncoderSource (PMDAxisInterface axis intf,
PMDuint8* mode,
PMDAxis* auxiliaryAxis)

Magellan® Motion Control IC Programmer’'s Command Reference

85




86

A

SetAuxiliaryEncoderSource (cont.) 08h
GetAuxiliaryEncoderSource 09h

VB-Motion API

MagellanAxis.AuxiliaryEncoderSourceSet (

)

MagellanAxis.AuxiliaryEncoderSourceGet (
auxiliaryAxis )

[in] mode, [in] auxiliaryAxis

[out] mode, [out]

Magellan® Motion Control IC Programmer’'s Command Reference




SetAxisOutMask 45h
GetAxisOutMask 46h

Syntax SetAxisOutMask axis sourceAxis sourceRegister selectionMask senseMask
GetAxisOutMask axis
Motor Types [ DC Brush | Brushless DC | Microstepping [ Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
sourceAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3
sourceRegister Disabled 0
Event Status 1
Activity Status 2
Signal Status 3
Drive Status 4
selectionMask see below bitmask
senseMask see below bitmask
Packet SetAxisOutMask
Structure | 0 [ axis [ 45h |
15 12 11 8 7 0
First Data Word
write | 0 | sourceRegister | sourceAxis |
15 12 11 8 7 0

Second Data Word
write | selectionMask |
15 0
Third Data Word
write | senseMask |

15 0
GetAxisOutMask
| 0 | axis | 46h |
15 12 11 8 7 0
First Data Word
read | 0 | sourceRegister | sourceAxis |
15 12 11 8 7 0

Second Data Word
read | selectionMask |
15 0
Third Data Word
read | senseMask |
15 0
Description SetAxisOutMask configures what will drive the AxisOut pin of the axis. The sourceRegister and sourceAxis

arguments specify which register, from which axis, will be used to drive AxisOut of the specified axis.

Magellan® Motion Control IC Programmer’'s Command Reference

87




A

SetAxisOutMask (cont.)
GetAxisOutMask

45h
46h

88

Description
(cont.)

Restrictions
C-Motion API

VB-Motion API

see

For each bit in the selectionMask that is set to 1, the corresponding bit of the specified sourceRegister is
selected to set AxisOut active. The senseMask bit determines which state of each bit causes AxisOut to
be active—a zero (0) in the senseMask means that a 0 in the corresponding bit will cause AxisOut to be
active, and a 1 in the senseMask means thata 1 in the cortesponding bit will cause AxisOut to be active.
If multiple bits are selected in the sourceRegister, AxisOut will be active if any of the selected bits,
combined with their sense, require it to be. The following table shows the available bits in each register.

Activity Signal
Event Status Status Status Drive Status

Bit Register Register Register Register

0 Motion Complete Phasing Initialized Encoder A

I Worap-around At Maximum Encoder B In Foldback
Velocity

2 Breakpoint | Tracking Encoder Index Overtemperature

3 Position Capture Capture Input

4 Motion Error Positive Limit In Holding

5 Positive Limit Negative Limit Overvoltage

6 Negative Limit AxisIn Undervoltage

7 Instruction Error Axis Settled Hall Sensor A

8 Disable Motor Mode Hall Sensor B

9 Overtemperature Fault  Position Capture Hall Sensor C

0Ah Bus Voltage Fault In Motion

0Bh Commutation Error In Positive Limit

0Ch Current Foldback In Negative Limit

0Dh /Enable Input

OEh Breakpoint 2 FaultOut

OFh

For example, assume it is desired to have the AxisOut pin of Axis| driven active whenever motion
complete of Axis2 is 1, or commutation error of Axis2 is 0. In this case, axis would be 0 (Axis/),
sourceAxis would be 1 (Axis2), sourceRegister would be 1 (Event Status), selectionMask would be
0801h (commutation error and motion complete) and senseMask would be 0001h.

GetAxisOutMask returns the mapping of the AxisOut pin of axis.

Depending on the product features, some bits may not be supported. See the product user’s guide.

PMDresult PMDSetAxisOutMask (PMDAxisInterface axis intf,
PMDAx1is sourceAxis,
PMDuint8 sourceRegister,
PMDuintl6 selectionMask,
PMDuintl6 senseMask)

PMDresult PMDGetAxisOutMask (PMDAxisInterface axis intf,
PMDAxis* sourceAxis,
PMDuint8* sourceRegister,
PMDuintl6* selectionMask,
PMDuintl6* senseMask)

MagellanAxis.AxisOutMaskSet( [in] sourceAxis,
[in] sourceRegister,
[in] selectionMask,
[in] senseMask )

MagellanAxis.AxisOutMaskGet ( [out] sourceAxis,
[out] sourceRegister,
[out] selectionMask,
[out] senseMask )

Magellan® Motion Control IC Programmer’'s Command Reference




SetBreakpoint
GetBreakpoint

D4h
Dbh

Syntax SetBreakpoint axis breakpointlD sourceAxis action trigger

GetBreakpoint axis breakpoint/D

Motor Types [ DCBrush

| BrushlessDC | Microstepping | Pulse & Direction |

Arguments Name
axis

breakpointiD

sourceAxis

action

trigger

Packet

Instance
Axis1
Axis2
Axis3
Axis4

Breakpoint1
Breakpoint2

Axis1
Axis2
Axis3
Axis4

None

Update

Abrupt Stop

Smooth Stop

— (Reserved) 4

Disable Position Loop & Higher Modules
Disable Current Loop & Higher Modules
Disable Motor Output & Higher Modules
Abrupt Stop with Position Error Clear

None

Greater Or Equal Commanded Position
Lesser Or Equal Commanded Position
Greater Or Equal Actual Position
Lesser Or Equal Actual Position
Commanded Position Crossed

Actual Position Crossed

Time

Event Status

Activity Status

Signal Status

Drive Status

SetBreakpoint

Encoding
0

1
2
3

WN -0 WN -0 - O

0 NO W,

WP>OONOOOPA,WN-=-0

j pien o

Structure |

0 axis |

D4h |

12 11 8 7
First data word

0

0

| breakpointID ]

Second data word

1 0

trigger | action

| sourceAxis ]

8 7

Magellan® Motion Control IC Programmer’'s Command Reference

89




D4h
Dbh

SetBreakpoint (cont.)

GetBreakpoint
A P

Packet GetBreakpoint
Structure | 0 axis | D5h |
(cont.) 15 12 11 8 7 0
First data word
write | 0 | breakpointID |
15 1 0
Second data word
read | trigger | action | sourceAxis |
15 8 7 43 0

Description SetBreakpoint establishes a breakpoint for the specified axis to be triggered by a condition or event
on sourceAxis, which may be the same as ot different from axis. Up to two concurrent breakpoints
can be set for each axis, each of which may have its own breakpoint type and comparison value. The
breakpointID field specifies which breakpoint the SetBreakpoint and GetBreakpoint commands

will address.

The six position breakpoints and the Time breakpoint are threshold-triggered; the breakpoint
occurs when the indicated value reaches or crosses a threshold. The status breakpoints are level-
triggered; the breakpoint occurs when a specific bit or combination of bits in the indicated status
register changes state. Thresholds and bit specifications are both set by the SetBreakpointValue

instruction.

The action determines what the motion control IC does when the breakpoint occurs, as follows:

Action Description

None No action

Update Transfer the double buffered registers specified by the Breakpoint Update
Mask into the active registers.

Abrupt Stop Causes an instantaneous halt of the trajectory generator. Trajectory

velocity is zeroed.

Smooth Stop

Causes a smooth stop to occur at the active deceleration rate.

Abrupt Stop with Position
Error Clear

Abrupt stop of the trajectory, and additionally zero the position error to
the servo.

Disable Position Loop &

Disables Trajectory generator and position loop modules.

Higher Modules

Disable Current Loop & Disables Trajectory generator, position loop, and current loop modules.
Higher Modules

Disable Motor Output & Disables all modules, including the motor output.

Higher Modules

GetBreakpoint returns the trigger, action, and sourceAxis for the specified breakpoint (1 ot 2) of the
indicated axis. When a breakpoint occurs, the trigger value will be reset to zero (0). The Commanded
Position Crossed and the Actual Position Crossed triggers are converted to one of the position trigger

types 1-4, depending on the current position when the command is issued.

Restrictions Always load the breakpoint comparison value (SetBreakpointValue command) before setting a
new breakpoint condition (SetBreakpoint command). Failure to do so will likely result in

unexpected behavior.

Breakpoint trigger options may be limited depending on the resources of the sourceAxis. See the

product user’s guide.

90 Magellan® Motion Control IC Programmer’'s Command Reference




SetBreakpoint (cont.) D4h
GetBreakpoint D5h

C-Motion API

VB-Motion API

see

PMDresult PMDSetBreakpoint (PMDAxisInterface axis intf,
PMDuintl6 breakpointID, PMDAxis sourceAxis,
PMDuint8 action, PMDuint8 trigger)

PMDresult PMDGetBreakpoint (PMDAxisInterface axis intf,
PMDuintl6 breakpointID, PMDAxis* sourceAxis,
PMDuint8* action, PMDuint8* trigger)

MagellanAxis.BreakpointSet( [in] breakpointID,
[in] sourceAxis,
[in] action,
[in] trigger )
MagellanAxis.BreakpointGet( [in] breakpointID,
[out] sourceAxis,
[out] action,
[out] trigger )

Set/GetBreakpointValue (p. 94), Set/GetBreakpointUpdateMask (p. 92)

Magellan® Motion Control IC Programmer’'s Command Reference

91




A

92

SetBreakpointUpdateMask 32h
GetBreakpointUpdateMask 33h

Syntax SetBreakpointUpdateMask axis breakPointID mask
GetBreakpointUpdateMask axis breakPoint/D
Motor Types [ DC Brush | Brushless DC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
breakpointlD  Breakpoint1 0
Breakpoint2 1
Type Scaling
mask unsigned 16 bit bitmask
Packet SetBreakpointUpdateMask
Structure [ 0 [ axis [ 32n |
15 12 1" 8 7 0
First data word
write | 0 | breakpointiD |
15 1 0
Second data word
write | mask |
15 0
GetBreakpointUpdateMask
| 0 | axis | 33h |
15 12 1 8 7 0
First data word
write | 0 | breakpointiD |
15 1 0
Second data word
read [ mask |
15 0
Description SetBreakpointUpdateMask configures what loops are updated upon the update action of a
breakpoint. If the bitmask for a given loop is set in the mask, the operating parameters for that loop
will be updated from the buffered values when the breakpoint is hit, and update is the breakpoint
action. Each breakpoint has its own update mask. The bitmask encoding is given below.
Name Bit(s) Description
Trajectory 0 Set to | to update trajectory from buffered parameters.
Position Loop | Set to | to update position loop from buffered parameters.
— 2 Reserved
Current Loop 3 Set to | to update current loop from buffered parameters.
— 4-15 Reserved

For example, if the update mask for breakpoint 1 is set to hexadecimal 0001h, and the action for
breakpoint 1 is set to update, the trajectory for the given axis will be updated from its buffered

parameters when breakpoint 1 is hit.

Magellan® Motion Control IC Programmer’'s Command Reference




SetBreakpointUpdateMask (cont.) 32h

GetBreakpointUpdateMask 33h
etBreakpointUpdateMas o

Description The Current Loop bit applies regardless of the active current control mode. When it is set, a breakpoint
(cont.) action of update will update cither the active FOC parameters or the active digital current loop

parameters, depending on which Current Control mode is active.

GetBreakpointUpdateMask gets the update mask for the indicated breakpoint.
Restrictions The Current Loop bit is only valid for products that include a current loop.

C-Motion API PMDresult PMDSetBreakpointUpdateMask (PMDAxisInterface axis intf,
PMDuintl6 breakPointID,
PMDuintl6 mask)
PMDresult PMDGetBreakpointUpdateMask (PMDAxisInterface axis intf,
PMDuintl6 breakPointID,
PMDuintl6* mask)

VB-Motion API Dim mask as Short
MagellanAxis.BreakpointUpdateMask ( breakpointID ) = mask
mask = MagellanAxis.BreakpointUpdateMask ( breakpointID )

see Set/GetBreakpoint (p. 89), Set/GetUpdateMask (p. 193)

Magellan® Motion Control IC Programmer’'s Command Reference 93




SetBreakpointValue D6h

GetBreakpointValue D7h
A P

Syntax SetBreakpointValue axis breakpoint/D value
GetBreakpointValue axis breakpoint/D

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
breakpointlD Breakpoint1 0
Breakpoint2 1

value (see below)

Packet SetBreakpointValue
Structure | 0 axis | D6h |
15 12 1 8 7 0
First data word
write | 0 | breakpointID |
15 1 0

Second data word
write [ value (high-order part) |
31 16
Third data word
write | value (low-order part) |
15 0

GetBreakpointValue

| 0 axis | D7h |
15 12 11 8 7 0
First data word
write | 0 | breakpointID |
15 1 0

Second data word
read | value (high-order part) |
31 16
Third data word
read | value (low-order part) |
15 0

Description SetBreakpointValue scts the breakpoint comparison value for the specified axis. For the position
and time breakpoints, this is a threshold comparison value.

94 Magellan® Motion Control IC Programmer’'s Command Reference




SetBreakpointValue (cont.) D6h
GetBreakpointValue D7h

L

Description
(cont.)

Restrictions

C-Motion API

VB-Motion API

see

The value parameter is interpreted according to the trigger condition for the selected breakpoint; see
SetBreakpoint (p. 89). The data format for each trigger condition is as follows:

Breakpoint Trigger Value Type Range Units

Greater Or Equal Commanded Position signed 32-bit 23 t0 23| counts

Lesser Or Equal Commanded Position signed 32-bit 231 t0 23 counts

Greater Or Equal Actual Position signed 32-bit _231 t0 23'—] counts

Lesser Or Equal Actual Position signed 32-bit 231 t0 23 counts

Commanded Position Crossed signed 32-bit _231 t0 23] counts

Actual Position Crossed signed 32-bit 231 t0 23 counts

Time unsigned 32-bit to 232-| cycles

Event Status 2 word mask - boolean status values
Activity Status 2 word mask - boolean status values
Signal Status 2 word mask - boolean status values
Drive Status 2 word mask - boolean status values

For level-triggered breakpoints, the high-order part of value is the selection mask, and the low-order
word is the sense mask. For each selection bit that is set to 1, the corresponding bit of the specified status
register is conditioned to cause a breakpoint when it changes state. The sense mask bit determines which
state causes the break. If it is 1, the corresponding status register bit will cause a break when it is set to
1. If it is 0, the status register bit will cause a break when it is set to 0.

For example, assume it is desired that the breakpoint type will be set to Event Status and that a
breakpoint should be recognized whenever the motion complete bit (bit 0 of Event Status register) is
set to 1, or the commutation error bit (bit 11 of Event Status register) is set to 0. In this situation the
high and low words for value would be high word: 0801h and low word: 0001h.

GetBreakpointValue returns the breakpoint value for the specified breakpointID.

Two completely separate breakpoints are supported, each of which may have its own breakpoint type and
comparison value. The breakpointlD field specifies which breakpoint the SetBreakpointValue and
GetBreakpointValue commands will address.

Always load the breakpoint comparison value (SetBreakpointValue command) before setting a new
breakpoint condition (SetBreakpoint command). Failure to do so will likely result in unexpected
behavior.

Depending on the product features, not all bits of all registers are supported. See the product uset’s
guide.

PMDresult PMDSetBreakpointValue (PMDAxisInterface axis intf,
PMDuintl6 breakpointlID,
PMDint32 value)

PMDresult PMDGetBreakpointValue (PMDAxisInterface axis intf,
PMDuintl6 breakpointID,
PMDint32* value)

MagellanAxis.BreakpointValueSet( [in] breakpointID, [in] value )
MagellanAxis.BreakpointValueGet( [in] breakpointID, [out] value )

Set/GetBreakpoint (p. 89)

Magellan® Motion Control IC Programmer’'s Command Reference

95




A

96

SetBufferLength
GetBufferLength

C2h
C3h

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

SetBufferLength bufferID length
GetBufferLength bufferlD

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Type Range
bufferlD unsigned 16 bits 0 to 31
length unsigned 32 bits 1t02% -1
SetBufferLength
| 0 | C2h |
15 8 7 0
First data word
write | 0 | bufferlD |
15 5 4 0

Second data word
write | length (high-order part) |
31 16
Third data word
write [ length (low-order part) |

15 0
GetBufferLength
| 0 | C3h |
15 8 7 0
First data word
write | 0 | bufferlD |
15 5 4 0
Second data word
read | length (high-order part) |
31 16
Third data word
read | length (low-order part) |
15 0

SetBufferLength sets the length, in numbers of 32-bit elements, of the buffer in the memory block
identified by bufferID. For buffers pointing to non-volatile RAM, the length should be specified in
16-bit words.

Note: The SetBufferLength command resets the buffers read and write indexes to 0.
The GetBufferLength command returns the length of the specified buffer.

The buffer length plus the buffer start address cannot exceed the memory size of the product. See
the product user’s guide.

PMDresult PMDSetBufferLength (PMDAxisInterface axis intf,

PMDuintl6 bufferID, PMDuint32 length)
PMDresult PMDGetBufferLength (PMDAxisInterface axis intf,

PMDuintl6 bufferID, PMDuint32* length)

Magellan® Motion Control IC Programmer’'s Command Reference




SetBufferLength (cont.) C2h
GetBufferLength C3h

VB-Motion API Dim length as Long
MagellanObject.BufferLength( bufferID ) = length
length = MagellanObject.BufferlLength( bufferID )

see Set/GetBufferReadIndex (p. 98), Set/GetBufferStart (p. 99), Set/GetBufferWritelndex (p. 101)

Magellan® Motion Control IC Programmer’'s Command Reference

97




SetBufferReadindex C6h

GetBufferReadindex C7h
A

Syntax SetBufferReadIndex bufferlD index
GetBufferReadlndex bufferID
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Type Range Scaling Units
bufferlD unsigned 16 bits 0 to 31 unity -
index unsigned 32 bits 0 fo buffer  unity double words
length - 1
Packet SetBufferReadIndex
Structure | 0 | Céh |
15 8 7 0
First data word
write | 0 | bufferlD |
15 5 4 0

Second data word
write [ index (high-order part) |
31 16
Third data word
write | index (low-order part) |
15 0

GetBufferReadindex

| 0 [ C7h |
15 8 7 0

First data word
write | 0 | bufferID |
15 54 0

Second data word

read | index (high-order part) |
31 16

Third data word
read | index (low-order part) |
15 0

Description SetBufferReadIndex scts the addtress of the read index for the specified bufferID. For buffers
pointing to non-volatile RAM, the read index should be specified in 16-bit words.

GetBufferReadIndex returns the current read index for the specified bufferlD.

Restrictions If the read index is set to an address beyond the length of the buffer, the command will not be
executed and will return host I/O error code 7, buffer bound exceeded.

C-Motion API PMDresult PMDSetBufferReadIndex (PMDAxisInterface axis intf,
PMDuintl6 bufferID,
PMDuint32 index)
PMDresult PMDGetBufferReadIndex (PMDAxisInterface axis intf,
PMDuintl6 bufferID,
PMDuint32* index)

VB-Motion API Dim index as Long
MagellanObject.BufferReadIndex ( bufferID ) = index
index = MagellanObject.BufferReadIndex( bufferID )

see Set/GetBufferLength (p. 96), Set/GetBufferStart (p. 99), Set/GetBufferWritelndex (p. 101)

98 Magellan® Motion Control IC Programmer’'s Command Reference




SetBufferStart COh
GetBufferStart C1h

Syntax SetBufferStart bufferlD address
GetBufferStart bufferlD
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Type Range Units
bufferlD unsigned 16 bits 0 to 31 -
address unsigned 32 bits 0t023 -1 double words
Packet SetBufferStart
Structure | 0 [ Coh |
15 8 7 0
First data word
write | 0 | bufferlD |
15 5 4 0

Second data word
write | address (high-order part) |
31 16
Third data word
write [ address (low-order part) |

15 0
GetBufferStart
| 0 | C1h |
15 8 7 0
First data word
write | 0 | bufferlD |
15 5 4 0

Second data word
read | address (high-order part) |
31 16
Third data word
read | address (low-order part) |
15 0

Description SetBufferStart scts the starting address for the specified buffer, in double-words, of the buffer in the
memory block identified by bufferID. In products with non-volatile RAM (NVRAM), the address range
beginning at 20000000h is used for NVRAM. Buffers pointing to NVRAM use a word size of 16 bits,
unlike buffers pointing to DRAM, which use a word size of 32 bits. For NVRAM buffers the start should
be specified in 16-bit words pluse 20000000h.

Note: The SetBufferStart command resets the buffers read and write indexes to 0.

The GetBufferStart command returns the starting address for the specified bufferlD.

Restrictions The buffer start address plus the buffer length cannot exceed the memory size of the product. See the
product user’s guide.

C-Motion API PMDresult PMDSetBufferStart (PMDAxisInterface axis intf, PMDuintlé6 bufferlID,
PMDuint32 address)
PMDresult PMDGetBufferStart (PMDAxisInterface axis intf, PMDuintlé6 bufferID,
PMDuint32* address)

Magellan® Motion Control IC Programmer’'s Command Reference

99




SetBufferStart (cont.) COh

GetBufferStart C1h
A

VB-Motion API Dim address as Long
MagellanObject.BufferStart( bufferID ) = address
address = MagellanObject.BufferStart( bufferID )

see Set/GetBufferLength (p. 96), Set/GetBufferReadIndex (p. 98), Set/GetBufferWritelndex (p.
101)

100 Magellan® Motion Control IC Programmer’'s Command Reference




SetBufferWritelndex C4h
GetBufferWritelndex Cbh

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

SetBufferWritelndex bufferID index
GetBufferWritelndex bufferiD

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |

Name Type Range Scaling Units

bufferlD unsigned 16 bits 0 to 31 unity -

index unsigned 32 bits 0 fo buffer  unity double words
length - 1

SetBufferWritelndex

| 0 | C4h |
15 8 7 0

First data word
write | 0 | bufferlD |
15 4 3 0

Second data word

write [ index (high-order part) |
31 16

Third data word
write | index (low-order part) |
15 0

GetBufferWritelndex

| 0 | C5h |
15 8 7 0

First data word
write | 0 | bufferlD |
15 4 3 0

Second data word

read | index (high-order part) |
31 16

Third data word
read | index (low-order part) |
15 0

SetBufferWritelndex sets the write index for the specified bufferID. For buffers pointing to non-volatile
RAM, the write index should be specified in 16-bit words.

GetBufferWritelndex returns the write index for the specified bufferlD.

PMDresult PMDSetBufferWriteIndex (PMDAxisInterface axis intf,

PMDuintl6 bufferID, PMDuint32 index);
PMDresult PMDGetBufferWriteIndex (PMDAxisInterface axis intf,

PMDuintl6 bufferID, PMDuint32* index)

Dim index as Long
MagellanObject.BufferWriteIndex ( bufferID ) = index
index = MagellanObject.BufferWritelIndex( bufferID )

Set/GetBufferLength (p. 96), Set/GetBufferReadIndex (p. 98), Set/GetBufferStart (p. 99)

Magellan® Motion Control IC Programmer’'s Command Reference

101




SetCANMode 12h

GetCANMode 15h
A

Syntax SetCANMode mode
GetCANMode
Motor Tvpes | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Type Encoding
mode unsigned 16 bits see below
Packet SetCANMode
Structure | 0 | 12h |
15 8 7 0
Data
write [ transmission rate | 0 | nodelD |
15 13 12 7 6 0
GetCANMode
| 0 | 15h |
15 8 7 0
Data
read | transmission rate | 0 | nodelD |
15 13 12 7 6 0
Description SetCANMode sects the CAN 2.0B communication parameters for the motion control IC. After

completion of this command, the motion control IC will respond to a CAN receive message
addressed to 600h + nodelD. CAN responses are sent to 580h + nodelD. The CAN transmission rate
will be as specified in the transmission rate parameter. Note that when this command is used to
change to a new nodelD, the command response (for this command) will be sent to the new
nodeID. The following table shows the encoding of the data used by this command.

Bits Name Instance Encoding
0-6 CAN NodelD Address 0 0
Address | |
Address 127 127
7-12 — (Reserved)
13-15 Transmission Rate 1,000,000 baud 0
800,000 |
500,000 2
250,000 3
125,000 4
50,000 5
20,000 6
10,000 7
Restrictions
C-Motion API PMDresult PMDSetCANMode (PMDAxisHandle axis handle, PMDuint8 nodelID,

PMDuint8 transmission rate)
PMDresult PMDGetCANMode (PMDAxisHandle axis handle, PMDuint8* nodeID,
. PMDuint8* transmission rate)
VB-Motion API CommunicationCAN.CANModeSet ( [ in ] nodeID, [ in ] transmission rate )

see

102 Magellan® Motion Control IC Programmer’'s Command Reference




SetCaptureSource D8h
GetCaptureSource D9h

Syntax SetCaptureSource axis source
GetCaptureSource axis

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
source Index 0
Home 1
High Speed Capture 2
Packet SetCaptureSource
Structure | 0 [ axis [ D8h |
15 12 11 8 7 0
Data
write | 0 |  source ]
15 3 2 0
GetCaptureSource
| 0 axis | D9h |
15 12 11 8 7 0
Data
read | 0 |  source ]
15 3 2 0
Description SetCaptureSource determines which of three signals—Index, Home, or High Speed Capture—is used to

trigger the capture of the actual axis position for the specified axis. GetCaptureSource returns the capture
signal source for the selected axis.

Restrictions High Speed Capture is not available as a capture soutce in all products. See the product uset’s guide.

C-Motion API PMDresult PMDSetCaptureSource (PMDAxisInterface axis intf,
PMDuintl6 source)

PMDresult PMDGetCaptureSource (PMDAxisInterface axis intf,
PMDuintl6* source)

VB-Motion API Dim source as Short
MagellanAxis.CaptureSource = source
source = MagellanAxis.CaptureSource

see GetCaptureValue (p. 32)

Magellan® Motion Control IC Programmer’'s Command Reference

103




A

SetCommutationMode

E2h

104

GetCommutationMode E3h
Syntax SetCommutationMode axis mode
GetCommutationMode axis
Motor Types | [ BrushlessDC | [
Arguments Name Instance Encoding
axis Axis1 0
AXxis2 1
Axis3 2
Axis4 3
mode Sinusoidal 0
Hall-based 1
Packet SetCommutationMode
Structure | 0 axis | E2h |
15 12 11 8 7 0
Data
write | 0 | mode |
31 1 0
GetCommutationMode
| 0 axis | E3h |
15 12 11 8 7 0
Data
read | 0 | mode |
31 1 0
Description SetCommutationMode sets the phase commutation mode for the specified axis.

Restrictions

C-Motion API

VB-Motion API

see

When set to Sinusoidal, as the motor turns, the encoder input signals are used to calculate the phase
angle. This angle is in turn used to generate sinusoidally varying outputs to each motor winding;

When set to Hall-based, the Hall effect sensor inputs are used to commutate the motor windings

using a “six-step” or “trapezoidal” waveform method.

When using FOC current control, this command is used to define the method used for motor phase

determination.

GetCommutationMode returns the value of the commutation mode.

PMDresult PMDSetCommutationMode (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetCommutationMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

Dim mode as Short
MagellanAxis.CommutationMode = mode
mode = MagellanAxis.CommutationMode

Set/GetPhasePrescale (p. 157), Set/GetPhaseCounts (p. 153)

Magellan® Motion Control IC Programmer’'s Command Reference




SetCurrent
GetCurrent

BEh
5Fh

Syntax

Motor Types

Arguments

Packet
Structure

Description

SetCurrent axis parameter value
GetCurrent axis parameter

| | | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
parameter Holding Motor Limit 0
Holding Delay 1
Drive Current 2
Type Range/Scaling
value unsigned 16-bit see below
SetCurrent
| 0 | axis | 5Eh |
15 12 1 8 7 0
First Data Word

write | parameter |
15 0
Second Data Word

write | value |
15 0
GetCurrent
| 0 axis | 5Fh |
15 12 N 8 7 0
First Data Word

write | parameter |

15 0
Second Data Word

read | value |

15 0

SetCurrent configures the operation of the holding current. The two parameters to set are Holding
Motor Limit, the maximum commanded current when in holding, and Holding Delay, the number of

cycles to wait after end of move before going into holding current.

The Holding Motor Limit is in units of % maximum current, with scaling of 100/2". Its range is 0 to

2'"°1. Tt defines the value to which the current will be limited when in the holding state. This limit is
applied as an additional limit to the motor limit, so the lower of the two will affect the true limit.

The Holding Delay is in units of trajectory generator cycles, with unity scaling and a range of 0 to 2"°-2. Tt
defines the wait time between ending a move and switching to the holding current limit. That is, there will
be a delay of Holding Delay trajectory cycles after Motion Complete, after which the In Holding bit in the
Drive Status register will be set, and the motor command will be limited by the Holding Motor Limit. When

the Holding Delay is set to 2"°~1 (its default), the axis will never go into holding current.

Magellan® Motion Control IC Programmer’'s Command Reference

105




SetCurrent (cont.) bEh

GetCurrent bFh
A

Description The Drive Cutrent is in units of % maximum curtent, with a scaling of 100/ 25 Tts range is 0 to

(cont.) 2"~ 1. Tt defines the value used for the active motor command when driving a step motor, that is,
when not in a holding state. This setting is used only by Atlas amplifiers driving step motors. Itis not
used by ION amplifiers, which use SetMotorCommand instead.

GetCurrent gets the indicated holding current parameter.

These commands were documented as SetCurrent and GetCurrent in previous versions of this

manual. The name has been changed for clarity, but the command remains backwards compatible.

Atlas When setting Holding Current or Drive Current this command will be relayed to an attached Atlas
amplifier.
Restrictions For pulse & direction motor types, only the Holding Delay is used. It delays the assertion of the At

Rest output by the indicated number of cycles after a move is complete.

C-Motion API PMDresult PMDSetCurrent (PMDAxisInterface axis intf,
PMDuintl6 parameter,
PMDuintl6 wvalue)
PMDresult PMDGetCurrent (PMDAxisInterface axis intf,
PMDuintl6 parameter,
PMDuintl6* value)

VB-Motion API MagellanAxis.CurrentSet( [in] parameter, [in] value )
MagellanAxis.CurrentGet( [in] parameter, [out] value )

see GetDriveStatus (p. 41), Set/GetSampleTime (p. 166), SetMotorCommand (p. 141)

106 Magellan® Motion Control IC Programmer’'s Command Reference




SetCurrentControlMode buffered 43h
GetCurrentControlMode 44h

L

Syntax

Motor Types

Arguments

Packet
Structure

Description

Atlas

Restrictions

C-Motion API

SetCurrentControlMode axis mode
GetCurrentControlMode axis

| | BrushlessDC | Microstepping |
Name Instance Encoding
axis Axis1 0

Axis2 1

Axis3 2

Axis4 3
mode Phase A /B Current Loops 0

FOC 1

Third leg floating 2

SetCurrentControlMode
| 0 | axis | 43h |
15 12 11 8 7 0
First data word
write | mode |
15 0

GetCurrentControlMode

| 0 axis | 44h |
15 12 11 8 7 0
First data word
read | mode |
15 0

SetCurrentControlMode configutes the axis to use either the Phase A/B method or the FOC method

for current control.

For three-phase brushless DC motors some products also support the third leg floating method, in
which only two of the three motor terminals is actively driven at any time, the remaining terminal being
left floating. This method may be appropriate for motors intended for commutation by Hall effect

SENsofrs.

GetCurrentControlMode gets the buffered current loop mode for the indicated axis.

These commands will be relayed to an attached Atlas amplifier. Atlas does not buffer the current control

mode.

This command is only available on products that include a digital current loop.

SetCurrentControlMode is a buffered command. It will not take effect until an update is done on the
current loop (through Update command, MultiUpdate command, or update action on breakpoint). The
value read by GetCurrentControlMode is the buffered setting.

PMDresult PMDSetCurrentControlMode (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetCurrentControlMode (PMDAxisInterface axis intf,
PMDuintl16* mode)

Magellan® Motion Control IC Programmer’'s Command Reference

107




SetCurrentControlMode (cont.) buffered 43h

GetCurrentControlMode 44h
A

VB-Motion API Dim mode as Short
MagellanAxis.CurrentControlMode = mode
mode = MagellanAxis.CurrentControlMode

see Update (p. 197), Set/GetUpdateMask (p. 193), MultiUpdate (p. 63),
Set/GetBreakpointUpdateMask (p. 92), GetFOCValue (p. 45), Get/SetFOC (p. 131),
GetCurrentLoopValue (p. 37), Get/SetCurrentLoop (p. 111)

108 Magellan® Motion Control IC Programmer’'s Command Reference




SetCurrentFoldback 41h
GetCurrentFoldback 42h

Syntax SetCurrentFoldback axis parameter value
GetCurrentFoldback axis parameter

Motor Types | DC Brush | Brushless DC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
parameter Continuous Current Limit 0
Energy Limit 1
Type Range/Scaling
value unsigned 16-bit see below
Packet SetCurrentFoldback
Structure | 0 [ axis [ 41n |
15 12 1 8 7 0

First data word
write | parameter |
15 0
Second data word
write | value |
15 0

GetCurrentFoldback
| 0 | axis | 42h |
15 12 N 8 7 0
First data word
write | parameter |
15 0
Second data word

read | value |
15 0
Description SetCurrentFoldback is used to set various I’t foldback-related parameters. Two parameters can be set,

the Continuous Current Limit, and the Energy Limit. The units of Continuous Current Limit are convertible
to milliAmps, and represent percentage of maximum peak current, with scaling of 100/2". The range
is from 0% to the factory default continuous current limit setting. When using this command with the
ION drive, check the ION Digital Drive User's Manual for exact scaling values. Different drives have
different scaling values and default limit settings.

The units of Energy Limit are convertible to Amp°Seconds, and represent the percentage of maximum
energy, with scaling of 100/2". The range is from 0% to the factory default energy limit setting, When
using this command with the ION drive, check the ION Digital Drive User's Manual for exact scaling

values. Different drives have different scaling values and default limit settings.

Magellan® Motion Control IC Programmer’'s Command Reference

109




SetCurrentFoldback (cont.) 41h

GetCurrentFoldback 42h
A

Description The Continuous Current Limit is used by the current foldback algorithm. When the cutrent output
(cont.) of the drive exceeds this setting, accumulation of the I? energy above this setting begins. Once the

accumulated excess I* energy exceeds the value specified by the Energy Limit parameter, a current
foldback condition

exists and the commanded current will be limited to the specified Continuous Current Limit. When
this occurs, the Current Foldback bit in the Event Status and Drive Status registers will be set. When
the accumulated I? energy above the Continuous Current Limit drops to zero (0), the limit is removed,
and the Current Foldback bit in the Drive Status register is cleared.

SetEventAction can be used to configure a change in operating mode when current foldback
occurs. Doing this does not interfere with the basic operation of Current Foldback described above.
If this is done, the Current Foldback bit in the Event Status register must be cleared prior to

restoring the operating mode, regardless of whether the system is in current foldback or not.

When current control is not active, a current foldback event always causes a change to the disabled
state (all loops and motor output are disabled), regardless of the programmed Event Action.
Changing the operating mode from disabled requires clearing of the Current Foldback bit in Event
Status.

GetCurrentFoldback gets the maximum continuous current setting.
Atlas These commands will be relayed to an attached Atlas amplifier.

Restrictions This command is only available on products that support digital current control.

Values of Continuous Current Limit greater than the factory setting for maximum continuous current
are not allowed.

C-Motion API PMDresult PMDSetCurrentFoldback (PMDAxisInterface axis intf,
PMDuintl6 parameter,
PMDuintl6 value)
PMDresult PMDGetCurrentFoldback (PMDAxisInterface axis intf,
PMDuintl6 parameter,
PMDuintle6e* value)

VB-Motion API MagellanAxis.CurrentFoldbackSet( [in] parameter, [in] value )
MagellanAxis.CurrentFoldbackGet( [in] parameter, [out] value )

see GetEventStatus (p. 43), ResetEventStatus (p. 75), GetDriveStatus (p. 41),
RestoreOperatingMode (p. 77), GetActiveOperatingMode (p. 27)

110 Magellan® Motion Control IC Programmer’'s Command Reference




SetCurrentLoop buffered 73h
GetCurrentLoop 14h

Syntax

Motor Types

Arguments

Packet
Structure

Description

SetCurrentLoop axis phase parameter value
GetCurrentLoop axis phase parameter

| DC Brush | Brushless DC | Microstepping |
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
phase Phase A 0
Phase B 1
Both (A and B) 2
parameter Proportional Gain (KpCurrent) 0
Integrator Gain (KiCurrent) 1
Integrator Sum Limit (ILimitCurrent) 2
Type Range/Scaling
value unsigned 16 bits see below
SetCurrentLoop
| 0 | axis | 73h |
15 12 1 8 7 0
First data word
write | 0 | phase | parameter |
15 12 1 8 7 0
Second data word
write | value |
15 0
GetCurrentLoop
| 0 | axis | 74h |
15 12 1 8 7 0
First data word
write | 0 | phase | parameter |
15 12 1 8 7 0
Second data word
read | value |
15 0

Set/GetCurrentLoop is used to configure the operating parameters of the Phase A/B PI digital current loops.
See the product user’s guide for more information on how each parameter is used in the current loop processing;
The value written/read is always an unsigned 16-bit value, with the parametet-specific scaling shown below:

Parameter Range Scaling Units
Proportional Gain (KpCurrent) 0to 25— 1/64 gain

Integer Gain (KiCurrent) 0to2'5-1 1/256 gain/cycles
Integrator Sum Limit (ILimitCurrent) 0 to 2'°=| 1/100 % current * cycles

A setting of 64 for KpCurrent cotresponds to a gain of 1. That is, an error signal of 30% maximum
current will cause the proportional contribution of the current loop output to be 30% of maximum
output. Similarly, setting KiCurrent to 256 gives it a gain of 1, and the value of the integrator sum would

become the integrator contribution to the output. The units of time for the integrator sum are cycles.

Magellan® Motion Control IC Programmer’'s Command Reference

111




SetCurrentLoop (cont.) buffered 73h

GetCurrentlLoo 14h
A y

Description ILimitCurrent is used to limit the contribution of the integrator sum at the output. Its effect depends
(cont.) on the value of KiCurrent. Setting ILimitCurrent to 1000 when KiCurrent is 10 means that the

maximum contribution to the output is 1000 x 10 = 10,000 out of 2'° - 1 or approximately 30.5%

The phase argument can be used to set the operating parameters for the A and B loops
independently. In most cases, the A and B loops will not require different operating parameters, so
SetCurrentLoop can be used with a phase of 2, which sets both the A and B loops in a single API
command. For GetCurrentLoop, a phase of 2 is not valid.

Atlas These commands will be relayed to an attached Atlas amplifier.

Restrictions Set/GetCurrentLoop are buffered commands. All parameters set are buffered, and will not take
effect until an update is done on the current loop (through Update command, MultiUpdate
command, or update action on breakpoint). The values read by GetCurrentlLoop are the buffered
settings.

This command is only supported in products that include digital current control, and when the

current control mode is Phase A/B.

C-Motion API PMDresult PMDSetCurrentLoop (PMDAxisInterface axis intf,
PMDuint8 phase,
PMDuint8 parameter,
PMDuintl6 value)

PMDresult PMDGetCurrentLoop (PMDAxisInterface axis intf,

PMDuint8 phase,
PMDuint8 parameter,
PMDuintl6e* wvalue)

VB-Motion API MagellanAxis.CurrentLoopSet ( [in] phase,
[in] parameter,
[in] wvalue )
MagellanAxis.CurrentlLoopGet ( [in] phase,
[in] parameter,
[out] value )

see Update (p. 197), Set/GetUpdateMask (p. 193), MultiUpdate (p. 63),
Set/GetBreakpointUpdateMask (p. 92), GetCurrentLoopValue (p. 37),
Set/GetCurrentControlMode (p. 107)

112 Magellan® Motion Control IC Programmer’'s Command Reference




SetDeceleration buffered 91h

GetDeceleration 92h :
Syntax SetDeceleration axis deceleration
GetDeceleration axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
deceleration  unsigned 32 bits 0to2¥-1 1/2'® counts/cycle?
microsteps/cycle?
Packet SetDeceleration
Structure | 0 | axis | 91h |
15 12 11 8 7 0

First data word
write | deceleration (high-order part) |
31 16
Second data word
write | deceleration (low-order part) |

GetDeceleration
| 0 | axis | 92h |
15 12 11 8 7 0

First data word

read | deceleration (high-order part) |
31 16

Second data word
read | deceleration (low-order part) |
15 0

Description SetDeceleration loads the maximum deceleration buffer register for the specified axis.

GetDeceleration returns the value of the maximum deceleration buffer.

Scaling example: To load a value of 1.750 counts/cycle? multiply by 65,536 (giving 114,688) and load the
resultant number as a 32-bit number, giving 0001 in the high word and C000h in the low word. Retrieved numbers
(GetDeceleration) must correspondingly be divided by 65,536 to convert to units of counts/cycle? or
steps/cycle?

Restrictions This is a buffered command. The new value set will not take effect until the next Update or

MultiUpdate command is entered, with the Trajectory Update bit set in the update mask.

These commands are used with the Trapezoidal and Velocity Contouring profile modes. They are not
used with the Electronic Gear or S-curve profile mode.

Note: If deceleration is set to zero (0), then the value specified for acceleration (SetAcceleration) will
automatically be used to set the magnitude of deceleration.

C-Motion API PMDresult PMDSetDeceleration (PMDAxisInterface axis intf,
PMDuint32 deceleration)
PMDresult PMDGetDeceleration (PMDAxisInterface axis intf,
PMDuint32* deceleration)
VB-Motion API Dim deceleration as Long
MagellanAxis.Deceleration = deceleration
deceleration = MagellanAxis.Deceleration
see Set/GetAcceleration (p. 78), Set/GetPosition (p. 158), Set/GetVelocity (p. 195),

MultiUpdate (p. 63), Update (p. 197)

113

Magellan® Motion Control IC Programmer’'s Command Reference




SetDefault

GetDefault
A !

89h
8Ah

Syntax

Motor Type

Arguments

Packet
Structure

Description

114

SetDefault axis variable value
GetDefault axis variable

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
variable CanMode 0
SerialPortMode485 1
Type Range/Scaling
value 32 bits see below
SetDefault
| 0 | axis | 89h |
15 12 1 8 7 0

First data word
write | variable |
15 0
Second data word
write | value (high-order part) |
31 16
Third data word
write | value (low-order part) |
15 0

GetDefault

| 0 | axis | 8Ah |
15 12 11 8 7 0

First data word
write | variable |
15 0

Second data word

read | value (high-order part) |
31 16

Third data word
read | value (low-order part) |
15 0

SetDefault is used to override the reset default settings of system variables. When SetDefault is
invoked to change the reset default of a variable, it stores the value sent by the user in non-volatile
memory. It does not modify the value of the variable in active use. On subsequent system power
cycles or resets, this value will become the default for the selected variable.

The value for each variable is the value that would be used normally by the “Set/Get” command
for that variable. When configuring variables that are 16-bit values, the value should be sent as the
low order part of the 32-bit value.

The axis sent with Set/GetDefault may or may not be relevent, depending on whether the

parameter is an axis-specific parameter or not.

GetDefault gets the reset default value of the indicated variable from non-volatile memory.

Magellan® Motion Control IC Programmer’'s Command Reference




SetDefault (cont.) 89h
GetDefault 8Ah

Restrictions This command is only available in ION products.

The SetDefault command can only be executed when motor output is disabled (e.g;, immediately after

power-up or reset).

C-Motion API PMDresult PMDSetDefault (PMDAxisInterface axis intf,
PMDuintl6 variable,
PMDuint32 wvalue)
PMDresult PMDGetDefault (PMDAxisInterface axis intf,
PMDuintl6 variable,
PMDuint32* value)

VB-Motion API MagellanAxis.DefaultSet( [in] variable, [in] value )
MagellanAxis.DefaultGet( [in] variable, [out] value )

see Reset (p. 70)

Magellan® Motion Control IC Programmer’'s Command Reference 115




SetDriveCommandMode 1Eh

GetDriveCommandMode 1Fh
A

Syntax SetDriveCommandMode
GetDriveCommandMode
Motor Type | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Type Encoding
mode 16-bit unsigned see below
Packet SetDriveCommandMode
Structure | 0 [ 7Eh |
15 8 7 0
write | mode |
15 0
GetDriveCommandMode
| 0 | 7Fh |
15 8 7 0
read | mode |
15 0
Description SetDriveCommandMode is used to change the command format for drive motor torque.

Currently it may be used to put an attached Atlas amplifier into pulse and direction input mode, by
using a mode value of 14h. After setting an Atlas amplifier to pulse and direction mode it will not
be possible for Magellan to communicate with it, except by electrically connecting the Magellan
pulse and direction outputs and changing the Magellan output mode. SetDriveCommandMode
does not change Magellan output mode.

GetDriveCommandMode returns the current Atlas command mode, see A#las Digital Amplifier
Complete Technical Reference for more detail.

Atlas These commands ate relayed to an attached Atlas amplifier.

C-Motion API PMDresult PMDSetDriveCommandMode (PMDAxisInterface axis intf,
PMDuintl6 mode,
PMDresult PMDGetDriveCommandMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

VB-Motion API MagellanAxis.DriveCommandMode = mode
mode = MagellanAxis.DriveCommandMode

116 Magellan® Motion Control IC Programmer’'s Command Reference




SetDriveFaultParameter 62h
GetDriveFaultParameter 60h

Syntax SetDriveFaultParameter axis parameter value
GetDriveFaultParameter axis parameter

Motor Types [ DC Brush | Brushless DC | Microstepping | Pulse & Direction

Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
parameter Overvoltage Limit 0
Undervoltage Limit 1
Event Recovery Mode 2
Watchdog Limit 3
Temperature Limit 4
Temperature Hysteresis 5
Shunt voltage limit 8
Shunt duty 9
Bus current supply limit 10
Bus current return limit 11
Type Range Scaling
value unsigned 16 bits see below see below

Packet SetDriveFaultParameter
Structure | 0 [ axis [ 62h |
15 2 1M 8 7 0

First data word
write | parameter |
15 0
Second data word

write | value |
15 0

GetDriveFaultParameter
| 0 | axis | 60n |
15 12 11 8 7 0
First data word
write | parameter |
15 0
Second data word

read |value |
15 0

Description SetDriveFaultParameter scts various drive operation limits. The particular limit set depends on the
parameter argument. When an operation limit is exceeded, motor output will be disabled and either a
Drive Exception or Overtemperature event will be raised, and a bit set in the Drive Fault Status register
to indicate the fault.

Not all products support all limits, consult product-specific documentation for more detail.
GetDriveFaultParameter returns the limits set by SetDriveFaultParameter.

The Overvoltage and Undervoltage limit parameters set the thresholds for determination of overvoltage

and undervoltage conditions. If the bus voltage exceeds the Overvoltage Limit value,

Magellan® Motion Control IC Programmer’'s Command Reference

117




SetDriveFaultParameter (cont.) 62h

GetDriveFaultParameter 60h
A

Description an overvoltage condition occurs. If the bus voltage is less than the Undervoltage Limit value, an
(cont'd) undervoltage condition occurs. Both the Overvoltage Limit and Undervoltage Limit have ranges of

0 to 2'°- 1; the scaling is product-dependent.

For example, to set the overvoltage threshold to 30V, Overvoltage Limit should be set to
30V/1.3612mv = 22039.

GetDriveFaultParameter reads the indicated limit.

The Event Recovery mode and Watchdog Limit are relevant only to an axis driving an Atlas
amplifier, see Atlas Digital Amplifier Complete Technical Reference for their use. These commands were
pteviously documented as Set/GetBusVoltageLimits. The names have been changed for clarity as

more fault parameter options were added.

Temperature Limit and Temperature Hysteresis are used either with an attached Atlas amplifier or
with a motion control IC with a temperature input. In the case of the motion control IC the
temperature scaling depends on external hardware. Because the input thermistor voltage may either
rise or fall with actual temperature the sign of the temperature limit is used to indicate the sign of
the gain: With a positive sign the internal temperature reading is just the input voltage. With a
negative sign, the internal temperature reading is the input voltage subtracted from 3.3V, and the
limit applied to that reading is the absolute value of the argument. In both cases 08000h
corresponds to 3.3V.

Shunt voltage limit and Shunt duty are used with motion control ICs that support a shunt PWM
output to control bus voltage rise due to regeneration. As long as the bus voltage remains below
the shunt voltage limit the shunt PWM will remain inactive, when bus voltage rises above the limit,
the shunt PWM will become active, with a duty cycle specified by Shunt duty. Shunt duty is scaled
so that 08000h corresponds to 100%. The shunt PWM will remain active until bus voltage falls
below the shunt voltage limit by a fixed hysteresis of 2.5%.

The bus current supply and bus current return limits are limits on the measured bus current supply
and the computed bus current return values. When either current exceeds the specified limit motor
output will be disabled, a DriveException event raised, and the Overcurrent Fault bit set in the
Drive Fault status register.

Atlas These commands will be relayed to an attached Atlas amplifier.

Restrictions Get/SetDriveFaultParameter is only available in products equipped with Bus voltage sensors.

The Overvoltage Limit cannot be set to a value greater than the reset default setting, and the
Undervoltage Limit cannot be set to a value less than the reset default setting,

Motion API PMDresult PMDSetDriveFaultParameter (PMDAxisInterface axis intf,
PMDuintl6 parameter,
PMDuintl6 wvalue)
PMDresult PMDGetDriveFaultParameter (PMDAxisInterface axis intf,
PMDuintl6 parameter,
PMDuintl6* value)

VB-Motion API MagellanAxis.DriveFaultParameterSet( [in] parameter, [in] value )
MagellanAxis.DriveFaultParameterGet( [in] parameter, [out] value )

see Set/GetFaultOutMask (p. 127), GetBusVoltage (p. 31), GetDriveFaultStatus (p. 39),
ClearDriveFaultStatus (p. 20), GetEventStatus (p. 43), ResetEventStatus (p. 75)

118 Magellan® Motion Control IC Programmer’'s Command Reference




SetDrivePWM 23h
GetDrivePWM 24h

Syntax

Motor Type

Arguments

Packet
Structure

Description

SetDrivePWM parameter value

GetDrivePWM parameter
| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Instance Encoding
parameter Limit
Dead Time 1
Signal Sense 2
Frequency 3
Refresh Period 4
Refresh Time 5
Current Sense Time 6
Type Range/Scaling
value 16-bit unsigned see below
SetDrivePWM
| 0 [ 23h |
15 8 7 0
write | 0 | parameter |
15 8 7 0
write | value |
15 0
GetDrivePWM
| 0 | 24h |
15 8 7 0
write | 0 | parameter |
15 8 7 0
read | value |
15 0

SetDrivePWM scts parameters used for controlling amplifier PWM output. The PWM Limit register
limits the maximum PWM duty cycle, and hence the effective output voltage. The range is from 0 to 2!,

ol corresponding to 100% PWM modulation.
The PWM Dead Time option controls the dead time added for High/Low PWM output between

turning off the high side switch and turning on the low side, or vice versa. It has units of ns.

The PWM Frequency option controls the frequency for all PWM signals, the value is approximately the
actual frequency, in Hz, scaled by 1/4. The available options ate shown in the table below. Not all
products support all frequencies.

Approximate PWM bit Actual SetPWMFrequency
Frequency Resolution Frequency Value

20 kHz 10 19.531 kHz 5,000

40 kHz 9 39.062 kHz 10,000

80 kHz 8 78.124 kHz 20,000

Magellan® Motion Control IC Programmer’'s Command Reference

119




SetDrivePWM (cont.) 23h

GetDrivePWM 24h
A

The PWM Signal Sense register controls whether an individual PWM signal is active high, encoded
by a set bit, or active low, encoded by a clear bit. The PWM signal sense is not applied in the case
of the sign signal for sign/magnitude PWM. The registet layout is shown below:

Signal Bit
PWM A High/PWM A Mag 0
PWM A Low I
PWM B High/PWM B Mag 2
PWM B Low 3
PWM C High/PWM C Mag 4
PWM C Low 5
PWM D High/PWM D Mag 6
PWM D Low 7
reserved 8-14
PWM shunt 15

The PWM Refresh Period and PWM Refresh Time options are used to specify a minimum amount
of off time when in High/Low PWM output mode. This may be tequired in order to allow chatge
pump capacitors to recharge. The Refresh Time is specified in ns, and the Refresh Period in
commutation cycles. The low side of each PWM channel will be guaranteed to be on for at least

the Refresh Time for every Refresh Period cycles.

The PWM Current Sense Time option is used to specify a minimum amount of off time for two
out of the three PWM output channels for three phase output in PWM High/Low output mode.
For motion control ICs supporting leg current sensing this may be required in order to get accurate

current measurement. It has units of ns.

GetDrivePWM returns the parameters set by SetDrivePWM.
Atlas These commands ate relayed to an attached Atlas amplifier.

C-Motion API PMDresult PMDSetDrivePWM (PMDAxisInterface axis intf,
PMDuintl6 option,
PMDuintl6 value);
PMDresult PMDGetDrivePWM (PMDAxisInterface axis intf,
PMDuintl6 option,
PMDuintlo* value)

VB-Motion API Magellan.DrivePWMSet( [in] parameter, [in] value )
Magellan.DrivePWMGet ( [in] parameter, [out] value )

120 Magellan® Motion Control IC Programmer’'s Command Reference




SetEncoderModulus 8Dh
GetEncoderModulus 8Eh

Syntax SetEncoderModulus axis modulus
GetEncoderModulus axis

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
modulus unsigned 16 bits 0to2"™-1  unity counts
Packet SetEncoderModulus
Structure | 0 [ axis | 8Dh |
15 12 11 8 7 0
Data

write | modulus |

GetEncoderModulus

| 0 axis [ 8En |
15 12 1 8 7 0
Data
read | modulus |
15 0
Description SetEncoderModulus sets the parallel word range for the specified axis when parallel-word feedback is

used. The modulus determines the range of the connected device. For multi-turn systems, this value is
used to determine when a position wrap condition has occurred. The value provided should be one half
of the actual range of the axis. For example, if the parallel-word input is used with a linear potentiometer
connected to an external A/D (Analog to Digital converter) which has 12 bits of resolution, then the
total range is 4,096 and a value of 2,048 should be loaded with this command.

GetEncoderModulus returns the encoder modulus.
Restrictions A value for encoder modulus is only required when the encoder source is set to parallel.

C-Motion API PMDresult PMDSetEncoderModulus (PMDAxisInterface axis intf,
PMDuintl6 modulus)

PMDresult PMDGetEncoderModulus (PMDAxisInterface axis intf,
PMDuintl6* modulus)

VB-Motion API Dim modulus as Short
MagellanAxis.EncoderModulus = modulus
modulus = MagellanAxis.EncoderModulus

see Set/GetEncoderSource (p. 122)

Magellan® Motion Control IC Programmer’'s Command Reference

121




SetEncoderSource DAh

GetEncoderSource DBh
A

Syntax SetEncoderSource axis source
GetEncoderSource axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
source Incremental 0
Parallel 1
None 2
Loopback 3
Pulse and Direction 4
Hall Sensors 5
32 bit parallel 6
Packet SetEncoderSource
Structure | 0 | axis | DAh |
15 12 1 8 7 0
Data
write | 0 source |
15 3 2 0
GetEncoderSource
| 0 axis | DBh |
15 12 1 8 7 0
Data
read | 0 | source |
15 3 2 0
Description SetEncoderSource scts the type of encoder feedback (Incremental quadrature encoder ot Parallel-

word) for the specified axis. When incremental quadrature is selected the motion control IC expects
A and B quadrature signals to be input at the QuadA and QuadB axis inputs. When parallel-word
is selected the motion control IC expects user-defined external circuitry connected to the motion
control IC’s external bus to load a 16-bit word containing the current position value for the selected
axis. External feedback devices with less than 16 bits may be used but the unused bits must be sign
extended or zeroed.

When motor type (sec SetMotorType (p. 144)) is set to Pulse and Direction and the encoder soutce
is set to Loopback, the step output is internally fed back into the quadrature counters. This allows

for position capture of the step position when a physical encoder is not present.

When the encoder source is set to Pulse and Direction, then Magellan expects the incoming position
encoding to correspond to a pulse & direction encoding scheme rather than a quadrature encoding
scheme. This feature is most commonly used with electronic gear mode, so that the Magellan

processor can be driven by a motion controller that outputs pulse & direction signals.

GetEncoderSource returns the code for the current type of feedback.

122 Magellan® Motion Control IC Programmer’'s Command Reference




SetEncoderSource (cont.) DAh
GetEncoderSource DBh

Restrictions A Loopback source is only supported for pulse & direction motors. Loopback is not supported in single-
chip versions (MC58110 & MC55110). A source value of None is typically only used with microstepping

and pulse & direction motors.
Not all products support all types of encoders. See the product user’s guide.

When using a parallel word encoder with the MotorType set to Pulse&Direction or MicroStepping, the
SetCountToStepRatio command must be used prior to this command.

C-Motion API PMDresult PMDSetEncoderSource (PMDAxisInterface axis intf, PMDuintlé6 source)
PMDresult PMDGetEncoderSource (PMDAxisInterface axis intf, PMDuintlé6* source)

VB-Motion API Dim source as Short
MagellanAxis.EncoderSource = source
source = MagellanAxis.EncoderSource

see Set/GetEncoderModulus (p. 121)

Magellan® Motion Control IC Programmer’'s Command Reference

123




SetEncoderToStepRatio DEh

GetEncoderToStepRatio DFh
A y

Syntax SetEncoderToStepRatio axis counts steps
GetEncoderToStepRatio axis

Motor Types | | | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
AXxis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
counts unsigned 16 bits 11021 unity counts
steps unsigned 16 bits 11021 unity microsteps
Packet SetEncoderToStepRatio
Structure | 0 | axis | DEh |
15 12 1 8 7 0
First data word
write | counts |

Second data word

write | steps |
15 0
GetEncoderToStepRatio
| 0 axis | DFh |
15 12 11 8 7 0
First data word
read | counts |

Second data word
read | steps |
15 0

Description SetEncoderToStepRatio sects the ratio of the number of encoder counts to the number of output
steps pet motor rotation used by the motion control IC to convert encoder counts into steps. Counts
is the number of encoder counts per full rotation of the motor. Steps is the number of steps output
by the motion control IC per full rotation of the motor. Since this command sets a ratio, the
parameters do not have to be for a full rotation as long as they correctly represent the encoder count
to step ratio. GetEncoderToStepRatio returns the ratio of the number of encoder counts to the

number of output steps per motor rotation.

C-Motion API PMDresult PMDSetEncoderToStepRatio (PMDAxisInterface axis intf,
PMDuintl6 counts, PMDuintl6 steps)
PMDresult PMDGetEncoderToStepRatio (PMDAxisInterface axis intf,
PMDuintl6* counts, PMDuintlé6* steps)

VB-Motion API MagellanAxis.EncoderToStepRatioSet( [in] counts, [in] steps )
MagellanAxis.EncoderToStepRatioGet ( [out] counts, [out] steps )

see Set/GetActualPositionUnits (p. 82)

124 Magellan® Motion Control IC Programmer’'s Command Reference




SetEventAction
GetEventAction

48h
49h

Syntax SetEventAction axis event action
GetEventAction axis event

Motor Types [ DC Brush [ Brushless DC [ Microstepping [ Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
event Immediate 0
Positive Limit 1
Negative Limit 2
Motion Error 3
Current Foldback 4
action None 0
— (Reserved) 1
Abrupt Stop 2
Smooth Stop 3
— (Reserved) 4
Disable Position Loop & Higher Modules 5
Disable Current Loop & Higher Modules 6
Disable Motor Output & Higher Modules 7
Abrupt Stop with Position Error Clear 8
Packet SetEventAction
Structure | 0 [ axis [ 48n |
15 12 1 8 7 0
First data word
write [ event |
15 0
Second data word
write [ action |
15 0
GetEventAction
| 0 axis | 49n |
15 12 1 8 7 0
First data word
write [ event |
15 0
Second data word
read [ action |
15 0
Description SetEventAction configures what actions will be taken by the axis in response to a given event. The action

can be cither to modify the operating mode by disabling some or all of the loops, or, in the case of all

loops temaining on, to perform an abrupt or smooth stop. The Abrupt Stop action can be done with or

without a clearing of the position error.

Magellan® Motion Control IC Programmer’'s Command Reference

125




A

SetEventAction (cont.) 48h
GetEventAction 49h

126

Description
(cont.)

Atlas

Restrictions

C-Motion API

VB-Motion API

see

When, through SetEventAction, one of the events causes an action, the event bit in the Event Status
register must be cleared prior to returning to operation. For trajectory stops, this means that the bit
must be cleared prior to performing another trajectory move. For changes in operating mode, this
means that the bit must be cleared prior to restoring the operating mode, ecither by
RestoreOperatingMode or SetOperatingMode.

An exception is the Motion Error event, which only needs to be cleared in Event Status if its action
is Abrubt Stop or Smooth Stop. If it causes changes in operating mode, the operating mode can be
restored without clearing the bit in Event Status first.

GetEventAction gets the action that is currently programmed for the given event with the
exception of the Immediate event, which cannot be read back.

For the Current Foldback event this command will be sent to an attached Atlas amplifier before
being applied to the local Magellan register. The foldback event action is set automatically on Atlas
by Magellan when first establishing SPI communication.

If a Smooth Stop action occurs while the trajectory mode is S-curve, the trajectory cannot be
restarted until the smooth stop is complete. If a Smooth Stop action occurs while the trajectory
mode is electronic gearing, an abrupt stop will occur.

PMDresult PMDSetEventAction (PMDAxisInterface axis intf,
PMDuintl6 event,
PMDuintl6 action)

PMDresult PMDGetEventAction (PMDAxisInterface axis intf,
PMDuintl6 event,
PMDuintl6* action)

Dim action as Short
MagellanAxis.EventAction( event ) = action
action = MagellanAxis.EventAction( event )

GetActiveOperatingMode (p. 27), RestoreOperatingMode (p. 77), Set/GetOperatingMode (p.
146)

Magellan® Motion Control IC Programmer’'s Command Reference




SetFaultOutMask
GetFaultOutMask

Syntax

Motor Types

Arguments

Packet
Structure

Description

SetFaultOutMask axis mask

GetFaultOutMask axis

| DC Brush | Brushless DC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0

Axis2 1

Axis3 2

Axis4 3
mask see below bitmask

SetFaultOutMask
| 0 axis | FBh
15 12 1 8 7

First data word

write | mask

15
GetFaultOutMask
| 0 axis | FCnh
15 12 11 8 7
First data word
read | mask
15

SetFaultOutMask configures the mask on Event Status register bits that will be ORed together on the
FaultOut pin. The FaultOut pin is active high, as are the bits in Event Status. Thus, FaultOut will go high
when any of the enabled bits in Event Status are set (1). The mask parameter is used to determine what

bits in the Event Status register can cause FaultOut high, as follows:

Name Bit

Motion Complete

Wrap-around

Breakpoint |

Position Capture

Motion Error

Positive Limit

Negative Limit

Instruction Error

Disable

O N([vn|jUn|Ah|W|N|—|O

Overtemperature Fault 9

Drive Exception 10

Commutation Error I

Current Foldback 12

— (Reserved) 13

Breakpoint 2 14

— (Reserved) I5

Magellan® Motion Control IC Programmer’'s Command Reference

127




SetFaultOutMask (cont.) FBh

GetFaultOutMask FCh
A

Description For example, a mask setting of hexadecimal 0610h will configure the FaultOut pin to go high upon

(cont.) a motion error, Overtemperature Fault, or Bus Voltage Fault. The FaultOut pin stays high until all
Fault enabled bits in Event Status are cleared. The default value for the FaultOut mask is 0600h —
Overtemperature Fault and Bus Voltage Fault enabled.

GetFaultOutMask gets the current mask for the indicated axis.

Atlas The Magellan version of this command does 7of apply to an Atlas amplifier. In order to control
Atlas behavior it is necessary to send a command directly, see A#as Digital Amplifier Complete Technical
Reference for more detail.

Restrictions This command is only available on products that include a FaultOut pin.
Depending on the product, all of the specified bits in Event Status may not be available.

In addition to the FaultOut mask on the Event Status register, the FaultOut pin is dtiven by a mask
on the Drive Fault Status register (bits 4, 2, 1, and 0) which cannot be changed, and is internally
ORed with the FaultOut mask on Event Status.

C-Motion API PMDresult PMDSetFaultOutMask (PMDAxisInterface axis intf,
PMDuintl6 mask)

PMDresult PMDGetFaultOutMask (PMDAxisInterface axis intf,
PMDuintl6* mask)

VB-Motion API Dim mask as Short
MagellanAxis.FaultOutMask = mask
mask = MagellanAxis.FaultOutMask

see Set/GetlInterruptMask (p. 136)

128 Magellan® Motion Control IC Programmer’'s Command Reference




SetFeedbackParameter
GetFeedbackParameter

21h
22h

Syntax SetFeedbackParameter parameter value
GetFeedbackParameter parameter value

Motor Types | DC Brush | Brushless DC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
parameter Encoder Modulus 0
Type Range/Scaling
value 32-bit unsigned see below
Packet
Structure SetFeedbackParameter
| | 21n |
15 8 7 0
write | | parameter |
15 8 7 0
\ value (high order parameter)
write 15 8 7 0
write | value (low order parameter)
15 0
GetFeedbackParameter
| | 22n |
15 8 7 0
write | | parameter |
15 8 7 0
\ value (high order parameter)
read 15 8 7 0
read | value (low order parameter) |
15 0

Description

SetFeedbackParameter scts parameters used to configure position feedback devices. Encoder

modulus is a 32 bit parallel encoder modulus, its least significant 16 bit word is identical with the

parameter set by SetEncoderModulus.

The Encoder Modulus sets the parallel word range for the specified axis when 32 bit parallel-word

feedback is used. The modulus determines the range of the connected device. For multi-turn systems,

this value is used to determine when a position wrap condition has occurred. The value provided should

be one half of the actual range of the axis. For example, if the parallel-word input is used with an SSI
encoder which has 24 bits of resolution, then the total range is 16777216 and a value of 8388608 should

be used as the encoder modulus.

GetFeedbackParameter returns the value of parameters set by SetFeedbackParameter.

Magellan® Motion Control IC Programmer’'s Command Reference

129




SetFeedbackParameter (cont.) 21h

GetFeedbackParameter 22h
A

C-Motion API PMDresult PMDSetFeedbackParameter (PMDAxisInterface axis intf,
PMDuint8 parameter,
PMDuint32 value);
PMDresult PMDGetFeedbackParameter (PMDAxisInterface axis intf,
PMDuint8 parameter,
PMDuint32* value)

VB-Motion API MagellanAxis.FeedbackParameter ( [in] parameter
[out] value )

see SetEncoderModulus (p. 121)

130 Magellan® Motion Control IC Programmer’'s Command Reference




SetfF0OC
GetFOC

buffered F6h

F7h

Syntax

Motor Types

Arguments

Packet
Structure

Description

SetFOC axis loop parameter value
GetFOC axis loop parameter

| BrushlessDC | Microstepping

Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
loop Direct(D) 0
Quadrature(Q) 1
Both(D and Q) 2
parameter Proportional Gain (KpDQ) 0
Integrator Gain (KiDQ) 1
Integrator Sum Limit (ILimitDQ) 2
Type Range/Scaling
value unsigned 16 bits see below
SetFOC
| 0 | axis | Féh |
15 12 1 8 7 0
First data word
write | 0 | loop | parameter |
15 12 1 8 7 0
Second data word
write | value |
15 0
GetFOC
| 0 | axis | F7h |
15 12 1 8 7 0
First data word
write | 0 | loop | parameter |
15 12 1 8 7 0
Second data word
read | value |
15 0

Set/GetFOC is used to configure the operating parameters of the FOC-Current control. See the product

uset’s guide for more information on how each parameter is used in the curtent loop processing. The value

written/read is always an unsigned 16-bit value, with the parameter-specific scaling shown below:

Parameter Range Scaling Units
Proportional Gain (KpDQ) 0to2"°-1| 1/64 gain

Integrator Gain (KiDQ) 0to 25| 1/256 gain/cycles
Integrator Sum Limit (ILimitDQ) 0to 251 1/100 % current * cycles

A setting of 64 for KpDQ cortesponds to a gain of 1. That is, an error signal of 30% maximum current will cause

the proportional contribution of the current loop output to be 30% of maximum output.

Magellan® Motion Control IC Programmer’'s Command Reference

131




SetFOC (cont.) huffered F6h

GetFOC F7h
A

Description Similarly, setting KiDQ to 256 gives it a gain of 1; the value of the integrator sum would become the
) 2 2 g g
(cont.) integrator contribution to the output.

ILimitDQ is used to limit the contribution of the integrator sum at the output. Its effect depends on
the value of KiDQ. Setting llimitDQ to 1000 when KiDQ is 10 means that the maximum contribution
to the output is 1000 x 10 = 10,000 out of 2'° - 1 or approximately 30.5%. The units of time for the

integrator sum are cycles.

The loop argument allows individual configuration of the parameters for the D and Q current loops.
Alternately, a loop of 2 can be used with SetFOC to set the D and Q loops with a single API
command. A loop of 2 is not valid for GetFOC.

Atlas These commands are relayed to an attached Atlas amplifier.

Restrictions Set/GetFOC arc buffered commands. All parameters set are buffered, and will not take effect until
an update is done on the current loop (through Update command, MultiUpdate command, or
update action on breakpoint). The values read by GetFOC are the buffered settings.

These commands are only supported in products that include digital current control, and when the

current control mode is set to FOC.

C-Motion API PMDresult PMDSetFOC (PMDAxisInterface axis intf,
PMDuint8 loop,
PMDuint8 parameter,
PMDuintl6 value)

PMDresult PMDGetFOC (PMDAxisInterface axis intf,

PMDuint8 loop,
PMDuint8 parameter,
PMDuintleo* value)

VB-Motion API MagellanAxis.FOCSet( [in] loop, [in] parameter, [in] value )
MagellanAxis.FOCGet ( [in] loop, [in] parameter, [out] value )

see Update (p. 197), Set/GetUpdateMask (p. 193), MultiUpdate (p. 63),
Set/GetBreakpointUpdateMask (p. 93), GetFOCValue (p. 45),
Set/GetCurrentControlMode (p. 107)

132 Magellan® Motion Control IC Programmer’'s Command Reference




SetGearMaster AEh
GetGearMaster AFh

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

SetGearMaster axis masterAxis source
GetGearMaster axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
masterAxis Axis1 0
AXxis2 1
Axis3 2
Axis4 3
source Actual 0
Commanded 1
SetGearMaster
| 0 | axis | AEh |
15 12 1 8 7 0
Data
write | 0 | source | masterAxis |
15 9 8 7 0
GetGearMaster
| 0 | axis | AFh |
15 12 1 8 7 0
Data
read | 0 | source | masterAxis |
15 9 8 7 0

SetGearMaster cstablishes the slave (axis) and master (masterAxis) axes for the electronic-gearing
profile, and sets the source, Actual or Commanded, of the master axis position data to be used.

The masterAxis determines the axis that will drive the slave axis. Both the slave and the master axes must
be enabled (SetOperatingMode command). The source determines whether the master axis’
commanded position as determined by the trajectory generator will be used to drive the slave axis, or
whether the master axis’ encoder position will be used to drive the slave.

GetGearMaster returns the value for the geared axes and position source.

Magellan® Motion Control IC Programmer’'s Command Reference

133




A

134

SetGearMaster (cont.) AEh
GetGearMaster AFh

C-Motion API

VB-Motion API

see

PMDresult PMDSetGearMaster (PMDAxisInterface axis intf,
PMDAx1is masterAxis, PMDuint8 source)

PMDresult PMDGetGearMaster (PMDAxisInterface axis intf,
PMDAxis* masterAxis, PMDuint8* source)

MagellanAxis.GearMasterSet( [in] masterAxis, [in] source )
MagellanAxis.GearMasterGet( [out] masterAxis, [out] source )

Set/GetGearRatio (p. 135)

Magellan® Motion Control IC Programmer’'s Command Reference




SetGearRatio
GetGearRatio

buffered 14h

59h

L

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions
C-Motion API

VB-Motion API

see

SetGearRatio s/laveAxis ratio
GetGearRatio slaveAxis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
slaveAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
ratio signed 32 bits 231 t02%—1 1/2'® SlaveCts/MasterCts
SetGearRatio
| 0 | slaveAxis | 14h |
15 12 11 8 7 0
First data word
write | ratio (high-order part) |
31 16
Second data word
write | ratio (low-order part) |
15 0
GetGearRatio
| 0 | slaveAxis | 59h |
15 12 11 8 7 0
First data word
read | ratio (high-order part) |
31 16
Second data word
read | ratio (low-order part) |
15 0

SetGearRatio scts the ratio between the master and slave axes for the Electronic Gear profile for the
given slaveAxis. Positive ratios cause the slave to move in the same ditection as the master, negative ratios
in the opposite direction. The specified ratio has a unity scaling of 65,536.

GetGearRatio returns the gear ratio set for the specified slaveAxis.

Scaling examples:

ratio value resultant ratio

-32,768 .5 negative slave counts for each positive master count
1,000,000 15.259 positive slave counts for each positive master count
123 .0018 positive slave counts for each positive master count

This is a buffered command. The new value set will not take effect until the next Update or

MultiUpdate command is entered, with the Trajectory Update bit set in the update mask.

PMDresult PMDSetGearRatio (PMDAxisInterface axis intf, PMDint32 ratio)
PMDresult PMDGetGearRatio (PMDAxisInterface axis intf, PMDint32* ratio)

Dim ratio as Long

MagellanAxis.GearRatio = ratio
ratio = MagellanAxis.GearRatio

Set/GetGearMaster (p. 133), MultiUpdate (p. 63), Update (p. 197)

Magellan® Motion Control IC Programmer’'s Command Reference

135




SetinterruptMask 2Fh

GetInterruptMask b6h
A P

Syntax SetinterruptMask axis mask
GetinterruptMask axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
mask Motion Complete 0001h
Wrap-around 0002h
Breakpoint 1 0004h
Capture Received 0008h
Motion Error 0010h
Positive Limit 0020h
Negative Limit 0040h
Instruction Error 0080h
Disable 0100h
Overtemperature Fault 0200h
Drive Exception 0400h
Commutation Error 0800h
Current Foldback 1000h
Breakpoint 2 4000h
Packet SetInterruptMask
Structure | 0 | axis | 2Fh |
15 12 1 8 7 0
Data
write | mask |
15 0

GetinterruptMask

| 0 axis | 56h |
15 12 1 8 7 0
Data
read | mask |
15 0
Description SetInterruptMask determines which bits in the Event Status register of the specified axis will cause

a host interrupt. For each interrupt mask bit that is set to 1, the corresponding Event Status register
bit will cause an interrupt when that status register bit goes active (is set to 1). Interrupt mask bits

set to 0 will not generate interrupts.
GetlnterruptMask returns the mask for the specified axis.

SetInterruptMask also controls CAN event notification when using the motion control IC’s CAN
2.0B interface. Whenever a host interrupt is activated, a CAN message is generated using message
ID 180h + nodelD, notifying interested CAN nodes of the change in the Event Status register.

Example: The interrupt mask value 28h will generate an interrupt when either the Positive Limit
bit or the Capture Received bit of the Event Status register goes active (set to 1).

136 Magellan® Motion Control IC Programmer’'s Command Reference




SetinterruptMask (cont.) 2Fh
GetInterruptMask h6h

Restrictions

C-Motion API PMDresult PMDSetInterruptMask (PMDAxisInterface axis intf,
PMDuintl6 mask)

PMDresult PMDGetInterruptMask (PMDAxisInterface axis intf,
PMDuintl6* mask)

VB-Motion API Dim mask as Short
MagellanAxis.InterruptMask = mask
mask = MagellanAxis.InterruptMask

see Clearinterrupt (p. 21), GetInterruptAxis (p. 49), Set/GetFaultOutMask (p. 127)

Magellan® Motion Control IC Programmer’'s Command Reference

137




Setderk

GetJerk
A

buffered 13h

58h

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

138

SetJerk axis jerk
GetJerk axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
jerk unsigned 32 bits 0 to 2371 1/2%2 counts/cycle®
microsteps/cycle®
SetJerk
| 0 | axis | 13h |
15 12 1 8 7 0

First data word
write [ jerk (high-order part) |
31 16
Second data word
write | jerk (low-order part) |
15 0

GetJerk
| 0 [ axis [ 58h |
15 12 11 8 7 0
First data word
read | jerk (high-order part) |
31 16
Second data word

read | jerk (low-order part) |
15 0

SetJerk loads the Jerk register in the parameter buffer for the specified axis.
GetJerk reads the contents of the Jerk register.

Scaling example: To load a jerk value (rate of change of acceleration) of 0.012345 counts/cycle’
(or steps/cycle’) multiply by 2% or 4,294,967,296. In this example this gives a value to load of
53,021,371 (decimal) which corresponds to a high word of 0329h and a low word of 0OABBh when
loading each word in hexadecimal.

SetJerk s a buffered command. The value set using this command will not take effect until the next
Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

This command is used only with the S-curve profile mode. It is not used with the Trapezoidal,
Velocity Contouring, or Electronic Gear profile modes.

PMDresult PMDSetJerk (PMDAxisInterface axis intf, PMDuint32 jerk)
PMDresult PMDGetJerk (PMDAxisInterface axis intf, PMDuint32* jerk)

Dim jerk as Long

MagellanAxis.Jerk = jerk

jerk = MagellanAxis.Jerk

Set/GetAcceleration (p. 78), Set/GetDeceleration (p. 113), Set/GetPosition (p. 158),
Set/GetVelocity (p. 195), MultiUpdate (p. 63), Update (p. 197)

Magellan® Motion Control IC Programmer’'s Command Reference




SetMotionCompleteMode EBh
GetMotionCompleteMode ECh

Syntax SetMotionCompleteMode axis mode
GetMotionCompleteMode axis

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
mode commanded 0
actual 1
Packet SetMotionCompleteMode
Structure | 0 [ axis [ EBh |
15 12 11 8 7 0
Data
write | 0 | mode |
15 1 0

GetMotionCompleteMode

| 0 | axis | ECh |
15 12 N 8 7 0
Data
read | 0 | mode |
15 1 0
Description SetMotionCompleteMode cstablishes the source for the comparison which determines the motion-

complete status for the specified axis. When set to commanded, the motion is considered complete when
the profile velocity reaches zero (0) and no further motion will occur without an additional host

command. This mode is unaffected by the actual encoder location.

When set to actual mode the motion complete bit will be set when the above condition is true, and when
the actual encoder position has been within the settle window (SetSettleWindow command) for the
number of cycles specified by the SetSettleTime command. The settle timer is started at zero (0) at the
end of the trajectory profile motion, so a minimum delay of settle time cycles will occur after the

trajectory profile motion is complete.

GetMotionCompleteMode returns the value for the motion-complete mode.
Restrictions

C-Motion API PMDresult PMDSetMotionCompleteMode (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetMotionCompleteMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

VB-Motion API Dim mode as Short
MagellanAxis.MotionCompleteMode = mode
mode = MagellanAxis.MotionCompleteMode

see Set/GetSettleTime (p. 170), Set/GetSettleWindow (p. 171)

Magellan® Motion Control IC Programmer’'s Command Reference 139




SetMotorBias OFh
GetMotorBias 2Dh

A

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

140

SetMotorBias axis bias
GetMotorBias axis

| DC Brush | BrushlessDC |
Name Instance Encoding
axis Axis1 0
AXis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
bias signed 16 bits 2% t0 21 100/2" % output
SetMotorBias
| 0 | axis | OFh |
15 12 11 8 7 0
Data
write | bias |
15 0
GetMotorBias
| 0 axis | 2Dh |
15 12 11 8 7 0
Data
read | bias |
15 0

SetMotorBias scts the output bias of the digital servo filter for the specified axis.
GetMotorBias reads the value of the bias of the digital servo filter.

Scaling example: If it is desired that a motor bias value of —2.5% of full scale be placed on the
setvo filter output, then this register should be loaded with a value of —2.5%32,768/100 = —819
(decimal). This corresponds to a loaded hexadecimal value of OFCCDh.

PMDresult PMDSetMotorBias (PMDAxisInterface axis intf, PMDintl6 bias)
PMDresult PMDGetMotorBias (PMDAxisInterface axis intf, PMDintl6* bias)

Dim bias as Short
MagellanAxis.MotorBias = bias
bias = MagellanAxis.MotorBias

Set/GetMotorCommand (p. 141), Set/GetMotorLimit (p. 143)

Magellan® Motion Control IC Programmer’'s Command Reference




SetMotorCommand buffered 17h
GetMotorCommand 69h

L

Syntax

Motor Types

Arguments

Packet
Structure

Description

Atlas

Restrictions

C-Motion API

SetMotorCommand axis command
GetMotorCommand axis

| DC Brush | BrushlessDC | Microstepping |
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
command signed 16 bits 2" t0 2151 100/2"° % output
SetMotorCommand
| 0 | axis | 77h |
15 12 11 8 7 0
Data
write | command |
15 0
GetMotorCommand
| 0 axis [ 69h |
15 12 11 8 7 0
Data

read | command |
15 0

SetMotorCommand loads the Motor Command buffer register of the specified axis. For axes configured
for microstepping motors, this command is used to control the magnitude of the output waveform. For DC
brush and brushless DC motors, this command directly sets the Motor Output register when the Position
Loop and Trajectory Generator modules are disabled in the operating mode.

GetMotorCommand reads the contents of the motor command buffer register.

Scaling example: If it is desired that a Motor Command value of 13.7% of full scale be output to the
motot, then this register should be loaded with a value of 13.7 * 32,768/100 = 4,489 (decimal). This
corresponds to a hexadecimal value of 1189h.

Note that SetMotorCommand is not used to set step motor drive current when using an Atlas
amplifier, SetCurrent should be used instead.

SetMotorCommand is a buffered command. The value set using this command will not take effect until
the next Update or MultiUpdate command, with the Position Loop Update bit set in the update mask.

PMDresult PMDSetMotorCommand (PMDAxisInterface axis intf,
PMDintl1l6 command)

PMDresult PMDGetMotorCommand (PMDAxisInterface axis intf,
PMDintl16* command)

Magellan® Motion Control IC Programmer’'s Command Reference

141




SetMotorCommand (cont.) buffered 17h

GetMotorCommand 69h
A

VB-Motion API Dim command as Short
MagellanAxis.MotorCommand = command
command = MagellanAxis.MotorCommand

see SetCurrent (p. 105), Set/GetMotorBias (p. 140), Set/GetMotorLimit (p. 143),
Set/GetOperatingMode (p. 146), MultiUpdate (p. 63), Update (p. 197)

142 Magellan® Motion Control IC Programmer’'s Command Reference




SetMotorLimit 06h
GetMotorLimit 07h

Syntax SetMotorLimit axis limit
GetMotorLimit axis
Motor TVPeS | DC Brush | BrushlessDC | |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
limit unsigned 16 bits 0to2"™-1 100/2" % output
Packet SetMotorLimit
Structure | 0 [ axis [ 06h |
15 12 1 8 7 0
Data
write | limit |
15 0
GetMotorLimit
| 0 axis | 07h |
15 12 1 8 7 0
Data
read | limit |
15 0

Description

Restrictions

C-Motion API

VB-Motion API

see

SetMotorLimit sets the maximum value for the motor output command allowed by the digital servo
filter of the specified axis. Motor command values beyond this value will be clipped to the specified
motor command limit. For example if the motor limit was set to 1,000 and the servo filter determined
that the current motor output value should be 1,100, the actual output value would be 1,000. Conversely,
if the output value was —1,100, then it would be clipped to —1,000. This command is useful for
protecting amplifiers, motors, or system mechanisms when it is known that a motor command exceeding

a certain value will cause damage.
GetMotorLimit reads the motor limit value.

Scaling example: If it is desired that a motor limit of 75% of full scale be established, then this register
should be loaded with a value of 75.0 * 32,767/100 = 24,576 (decimal). This corresponds to a
hexadecimal value of 06000h.

This command only affects the motor output when the position loop or trajectory generator is enabled.
When the motion control IC is in open loop mode, this command has no effect.

PMDresult PMDSetMotorLimit (PMDAxisInterface axis intf,
PMDuintl6 1imit);

PMDresult PMDGetMotorLimit (PMDAxisInterface axis intf,
PMDuintl6* I1imit)

Dim limit as Short
MagellanAxis.MotorLimit = Iimit
limit = MagellanAxis.MotorLimit

Set/GetMotorBias (p. 140), Set/GetMotorCommand (p. 141), Set/GetOperatingMode (p. 146)

Magellan® Motion Control IC Programmer’'s Command Reference

143




SetMotorType 02h

GetMotorType 03h
o yp

Syntax SetMotorType axis type
GetMotorType axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
type Brushless DC (3 phase) 0

Brushless DC (2 phase) 1
Microstepping (3 phase) 2
Microstepping (2 phase) 3

Pulse & Direction 4
DC Brush 7
Packet SetMotorType
Structure | 0 [ axis | 02h |
15 12 1 8 7 0
Data
write | 0 | type |
15 3 2 0
GetMotorType
| 0 axis | 03h |
15 12 1" 8 7 0
Data
read | 0 | type |
15 3 2 0
Description SetMotorType scts type of motor being driven by the selected axis. This operation sets the number of
phases for commutation on the axis, as well as internally configuring the motion control IC for the motor

type.

The following table describes each motor type, and the number of phases to be commutated.

Motor type Commutation
Brushless DC (3 phase) 3 phase
Brushless DC (2 phase) 2 phase
Microstepping (3 phase) 3 phase

Microstepping (2 phase) 2 phase

Pulse & Direction None
DC Brush None

GetMotorType returns the configured motor type for the selected axis.

Restrictions The motor type should only be set once for each axis, either via the motor configuration word during device
startup, or immediately after reset using SetMotorType. Once it has been set, it should not be changed.
Executing SetMotorType will reset many vatiables to their motor type specific default values.

Not all motor types are available on all products. See the product user’s guide.

C-Motion API PMDresult PMDSetMotorType (PMDAxisInterface axis intf, PMDuint8 type)
PMDresult PMDGetMotorType (PMDAxisInterface axis intf, PMDuint8* type)

144 Magellan® Motion Control IC Programmer’'s Command Reference




SetMotorType (cont.) 02h
GetMotorType 03h o

VB-Motion API Dim type as Short
MagellanAxis.MotorType = type
type = MagellanAxis.MotorType

see Reset (p. 70)

Magellan® Motion Control IC Programmer’'s Command Reference 145




146

SetOperatingMode 65h
GetOperatingMode 66h

Syntax SetOperatingMode axis mode
GetOperatingMode axis
Motor Types [ DC Brush [ Brushless DC | Microstepping [ Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range/Scaling
mode unsigned 16-bit see below
Packet SetOperatingMode
Structure | 0 [ axis [ 65n |
15 12 11 8 7 0
First data word
write | 0 | mode |
15 43 0
GetOperatingMode
| 0 | axis 66h |
15 12 11 8 7 0
First data word
read | 0 | mode |
15 43 0
Description SetOperatingMode configures the operating mode of the axis. Each bit of the mode configures

whether a feature/loop of the axis is active or disabled, as follows:

Name Bit Description
Axis Enabled

0: No axis processing, axis outputs in reset state. |: axis active.

Motor Output Enabled 0: axis motor outputs disabled. |: axis motor outputs enabled.

Current Control Enabled 0: axis current control bypassed. I: axis current control active.

Position Loop Enabled 0: axis position loop bypassed. |: axis position loop active.

Trajectory Enabled 0: trajectory generator disabled. |: trajectory generator enabled.

0
|
2
— 3 Reserved
4
5
6—

15 Reserved

When the axis is disabled, no processing will be done on the axis, and the axis outputs will be at their
reset states. When the axis motor output is disabled, the axis will function normally, but its motor
outputs will be in their disabled state. When a loop is disabled (position or current loop), it operates
by passing its input directly to its output, and clearing all internal state variables (such as integrator

sums, etc.). When the trajectory generator is disabled, it operates by commanding 0 velocity.

Magellan® Motion Control IC Programmer’'s Command Reference




SetOperatingMode (cont.) 65h

GetOperatingMode 66h o

Description For example, to configure an axis for Torque mode, (trajectory and position loop disabled) the operating
(cont.) mode would be set to hexadecimal 0007h.

This command should be used to configure the static operating mode of the axis. The actual current operating
mode may be changed by the axis in response to safety events, or user-programmable events. In this case, the
present operating mode is available using GetActiveOperatingMode. GetOperatingMode will always
return the static operating mode set using SetOperatingMode. Execcuting the SetOperatingMode
command sets both the static operating mode and the active operating mode to the desired state.

GetOperatingMode gets the operating mode of the axis.

Atlas The SetOperatingMode command will be relayed to an attached Atlas amplifier before being applied to
the local Magellan register. GetOperatingMode does not require any additional Atlas communication.

Restrictions The possible operating modes of an axis is product specific, and in some cases axis specific. See the

product user’s guide for a description of what operating modes are supported on each axis.

C-Motion API PMDresult PMDSetOperatingMode (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetOperatingMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

VB-Motion API Dim mode as Short
MagellanAxis.OperatingMode = mode
mode = MagellanAxis.OperatingMode

see GetActiveOperatingMode (p. 27), RestoreOperatingMode (p. 77)

Magellan® Motion Control IC Programmer’'s Command Reference 147




SetOutputMode EOh

GetOutputMode 6Eh
: utpu

Syntax SetOutputMode axis mode
GetOutputMode axis

Motor Types | DC Brush | BrushlessDC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
mode Parallel DAC Offset Binary 0
PWM Sign Magnitude 1
PWM 50/50 Magnitude 2
SPI DAC Offset Binary 3
Parallel DAC Sign Magnitude 4
SPI DAC 2’s Complement 5
Atlas SPI 6
PWM High/Low 7
Pulse & Direction 8
Atlas Recovery 9
None 10
Packet SetOutputMode
Structure | 0 [ axis | EOh |
15 12 1 8 7 0
Data
write | 0 | mode |
15 4 3 0
GetOutputMode
| 0 axis | 6Eh |
15 12 1 8 7 0
Data
read | 0 | mode |
15 4 3 0
Description SetOutputMode scts the form of the motor output signal of the specified axis.

GetOutputMode returns the value for the motor output mode.
Restrictions Not all output modes are available on all products. See the product uset’s guide.

C-Motion API PMDresult PMDSetOutputMode (PMDAxisInterface axis intf, PMDuintl6 mode)
PMDresult PMDGetOutputMode (PMDAxisInterface axis intf, PMDuintl6* mode)

VB-Motion API Dim mode as Short
MagellanAxis.OutputMode = mode
mode = MagellanAxis.OutputMode

see

148 Magellan® Motion Control IC Programmer’'s Command Reference




SetOvertemperatureLimit 1Bh
GetOvertemperatureLimit 1Ch o

Syntax SetOvertemperatureLimit axis limit
GetOvertemperatureLimit axis

Motor Types | DC Brush | Brushless DC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
limit signed 16 bits -2 to 2151 28 °C
Packet SetOvertemperatureLimit
Structure | 0 | axis | 1Bh |
15 2 1M 8 7 0
First data word
write [ Timit |
15 0
GetOvertemperatureLimit
| 0 | axis | 1Ch |
15 2 1M 8 7 0
First data word
read | limit |
15 0
Description SetOvertemperatureLimit scts the temperature threshold upon which an overtemperature condition

will occurr. For example, to set the overtemperature threshold at 60 degrees C, the value should be
60*256 = 15360. When the programmed threshold is exceeded, the Overtemperature Fault bit is set in
the Event Status register, and the axis enters the overtemperature state.

GetOvertemperatureLimit gets the current overtemperature threshold setting,

This command is not used to set the temperature limit for MC58113. Use SetDriveFaultParameter.
Atlas These commands are not used with Atlas.

Restrictions Get/SetOvertemperatureLimit is only available in products equipped with temperature sensors.

If the axis has more than one temperature sensot, the temperature used to compare to the

overtemperature threshold will be the highest value of all sensor readings.
The overtemperature threshold cannot be set to a value greater than the reset default setting.
C-Motion API PMDresult PMDSetOvertemperaturelLimit (PMDAxisInterface axis intf,
PMDintl6 Ilimit)

PMDresult PMDGetOvertemperatureLimit (PMDAxisInterface axis intf,
PMDintlo* 1imit)

Magellan® Motion Control IC Programmer’'s Command Reference 149




SetOvertemperatureLimit (cont.) 1Bh
GetOvertemperatureLimit 1Ch

A

VB-Motion API Dim Iimit as Short
MagellanAxis.Overtemperaturelimit = Iimit
limit = MagellanAxis.OvertemperatureLimit

see GetTemperature (p. 55), GetEventStatus (p. 43), ResetEventStatus (p. 75),
SetDriveFaultParameter (p. 117)

150 Magellan® Motion Control IC Programmer’'s Command Reference




SetPhaseAngle
GetPhaseAngle

84h
2Ch

Syntax SetPhaseAngle axis angle
GetPhaseAngle axis

Motor Types | [ BrushlessDC | Microstepping |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
angle unsigned 16 bits 0to2"™-1 unity counts
microsteps
Packet SetPhaseAngle
Structure | 0 axis | 84h |
15 12 N 8 7 0
Data
write | angle |
15 0
GetPhaseAngle
| 0 axis | 2Ch |
15 12 N 8 7 0
Data
read | angle |
15 0
Description SetPhaseAngle scts the instantaneous commutation angle for the specified axis. For brushless DC
motors, the phase angle is specified in units of encoder counts. For microstepping motors, it is specified
in units of microsteps. GetPhaseAngle returns the value of the phase angle. To convert counts to an
actual phase angle, divide by the number of encoder counts per electrical cycle and multiply by 360.
For example, if a value of 500 is retrieved using GetPhaseAngle and the counts per electrical cycle value
has been set to 2,000 (SetPhaseCounts command), this corresponds to an angle of
(500/2,000)*360 = 90 degtees current phase angle position. SetPhaseAngle resets the phase offset
previously set by SetPhaseOffset.
Restrictions The specified angle must not exceed the number set by the SetPhaseCounts command.
C-Motion API PMDresult PMDSetPhaseAngle (PMDAxisInterface axis intf,
PMDuintl6 angle)
PMDresult PMDGetPhaseAngle (PMDAxisInterface axis intf,
PMDuintlé* angle)
VB-Motion API Dim angle as Short
MagellanAxis.PhaseAngle = angle
angle = MagellanAxis.PhaseAngle
see Set/GetPhaseCounts (p. 153)

Magellan® Motion Control IC Programmer’'s Command Reference

151




A

SetPhaseCorrectionMode ESh
GetPhaseCorrectionMode E9h

152

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

SetPhaseCorrectionMode axis mode
GetPhaseCorrectionMode axis

| | BrushlessDC | |

Name Instance Encoding
axis Axis1 0

AXis2 1

Axis3 2

Axis4 3
mode Disable 0

Index 1

Hall 2

SetPhaseCorrectionMode
| 0 | axis | E8h |
15 12 1 8 7 0
Data
write | 0 | mode |
15 1 0

GetPhaseCorrectionMode
| 0 | axis | E9h |
15 12 1 8 7 0
Data
read | 0 | mode |
15 1 0

SetPhaseCorrectionMode controls the method used for phase correction on the specified axis.
Phase correction is optional, and may be disabled by using mode 0. In mode 1 (Index) the encoder
Index signal is used to update the commutation phase angle once per mechanical revolution. In
mode 2 (Hall) a particular Hall sensor transition is used to update the commutation phase angle
once every twelve electrical revolutions.

Phase correction ensutes that the commutation angle will remain correct even if some encoder
counts are lost due to electrical noise, or due to the number of encoder counts per electrical
revolution not being an integer. Because Hall sensors normally have significant hysteresis index
based correction is preferred if an index signal is available.

GetPhaseCorrectionMode returns the phase correction mode.

PMDresult PMDSetPhaseCorrectionMode (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetPhaseCorrectionMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

Dim mode as Short
MagellanAxis.PhaseCorrectionMode = mode
mode = MagellanAxis.PhaseCorrectionMode

GetPhaseCommand (p. 50), InitializePhase (p. 62), Set/GetPhaseCounts (p. 153)

Magellan® Motion Control IC Programmer’'s Command Reference




SetPhaseCounts
GetPhaseCounts

Syntax

Motor Types

Arguments

Packet
Structure

Description

SetPhaseCounts axis counts
GetPhaseCounts axis

| | BrushlessDC | Microstepping
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range
counts unsigned 16 bits 1 to 251
SetPhaseCounts
| 0 axis [ 75h
15 12 11 8 7
Data
write | counts
15
GetPhaseCounts
| 0 axis | 7Dh
15 12 11 8 7
Data

read | counts

15

For axes configured for brushless DC motor types, SetPhaseCounts sets the number of encoder counts
per electrical cycle of the motor. The number of electrical cycles is equal to 122 the number of motor

poles. If this value is not an integer, then the closest integer value should be used, and phase correction

mode should be enabled. See SetPhaseCorrectionMode (p. 152).

For axes configured for microstepping motor types, the number of microsteps per full step is set using
the SetPhaseCounts command. The parameter used for this command represents the number of
microsteps per electrical cycle (4 times the desited number of microsteps). For example, to set 64

microsteps per full step, the SetPhaseCounts 256 command should be used. The maximum number of

microsteps that can be generated per full step is 256, giving a maximum parameter value of 1024.

GetPhaseCounts returns the number of counts or microsteps per electrical cycle.

Restrictions

C-Motion API PMDresult PMDSetPhaseCounts (PMDAxisInterface axis intf, PMDuintl6é counts)
PMDresult PMDGetPhaseCounts (PMDAxisInterface axis intf, PMDuintlé6* counts)

VB-Motion API Dim counts as Short

MagellanAxis.PhaseCounts
MagellanAxis.PhaseCounts

see Set/GetPhaseAngle (p. 151)

counts

counts

Magellan® Motion Control IC Programmer’'s Command Reference

153




SetPhaselnitializeMode Edh
GetPhaselnitializeMode Ebh

A

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

154

SetPhaselnitializeMode axis mode
GetPhaselnitializeMode axis

| | BrushlessDC | |

Name Instance Encoding
axis Axis1 0
AXis2 1
Axis3 2
Axis4 3
mode Algorithmic 0
Hall-based 1

SetPhaselnitializeMode
| 0 axis | E4h |
15 12 1 8 7 0
Data
write | 0 | mode |
15 1 0

GetPhaselnitializeMode
| 0 axis | E5h |
15 12 1 8 7 0
Data
read | 0 | mode |
15 1 0

SetPhaselnitializeMode establishes the mode in which the specified axis is to be initialized for
commutation. The options are Algorithmic and Hall-based. In algorithmic mode the motion control
IC briefly stimulates the motor windings and sets the initial phasing based on the observed motor
response. In Hall-based initialization mode, the three Hall sensor signals are used to determine the

motor phasing.

GetPhaselnitializeMode returns the value of the initialization mode.

Algorithmic mode should only be selected if it is known that the axis is free to move in both

directions, and that a brief uncontrolled move can be tolerated by the motor, mechanism, and load.

PMDresult PMDSetPhaseInitializeMode (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetPhaseInitializeMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

Dim mode as Short
MagellanAxis.PhaseInitializeMode = mode
mode = MagellanAxis.PhaseInitializeMode

InitializePhase (p. 62), Set/GetPhaselnitializeTime (p. 155)

Magellan® Motion Control IC Programmer’'s Command Reference




SetPhaselnitializeTime
GetPhaselnitializeTime

12h
1Ch

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

SetPhaselnitializeTime axis time
GetPhaselnitializeTime axis

| | BrushlessDC | |

Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
time unsigned 16 bits 0to2"™-1  unity cycles
SetPhaselnitializeTime
| 0 | axis | 72h |
15 12 11 8 7 0
Data
write [ time |
15 0
GetPhaselnitializeTime
| 0 axis | 7Ch |
15 12 11 8 7 0
Data
read | time |
15 0

SetPhaselnitializeTime sets the time value (in cycles) to be used during the algorithmic phase

initialization procedure. This value determines the duration of each of the four segments in the phase

initialization algorithm.

GetPhaselnitialize Time returns the value of the phase initialization time.

PMDresult PMDSetPhaseInitializeTime (PMDAxisInterface axis intf,
PMDuintl6 time)

PMDresult PMDGetPhaseInitializeTime (PMDAxisInterface axis intf,
PMDuintl6* time)

Dim time as Short
MagellanAxis.PhaseInitializeTime = time
time = MagellanAxis.PhaseInitializeTime

InitializePhase (p. 62), Set/GetPhaselnitializeMode (p. 154)

Magellan® Motion Control IC Programmer’'s Command Reference

155




A

SetPhaseOffset 16h
GetPhaseOffset 1Bh

156

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

SetPhaseOffset axis offset
GetPhaseOffset axis

| | BrushlessDC | |

Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
offset unsigned 16 bits 0to2"™-1 unity counts
SetPhaseOffset
| 0 | axis | 76h |
15 12 11 8 7 0
Data
write | offset |
15 0
GetPhaseOffset
| 0 axis | 7Bh |
15 12 11 8 7 0
Data
read | offset |
15 0

SetPhaseOffset sets the offset from the index mark of the specified axis to the internal zero phase
angle. This command will have no immediate effect on the commutation angle but will have an

effect once the index pulse is encountered. The settable range of phase offset is 0 to 32,767.
GetPhaseOffset returns the value of the phase offset.

To convert counts to a phase angle in degrees, divide by the number of encoder counts per electrical
cycle and multiply by 360. For example, if a value of 500 is specified using SetPhaseOffset and the
counts per electrical cycle value has been set to 2,000 (SetPhaseCounts command) this
cotresponds to an angle of (500/2,000)*360 = 90 degrees phase angle at the index mark.

Before the first index capture has occurred, GetPhaseOffset will return —1.

PMDresult PMDSetPhaseOffset (PMDAxisInterface axis intf,
PMDintl6o offset)

PMDresult PMDGetPhaseOffset (PMDAxisInterface axis intf,
PMDintl6* offset)

Dim offset as Short
MagellanAxis.PhaseOffset = offset
offset = MagellanAxis.PhaseOffset

Magellan® Motion Control IC Programmer’'s Command Reference




SetPhasePrescale E6h
GetPhasePrescale E7h

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

SetPhasePrescale axis scale
GetPhasePrescale axis

| | BrushlessDC | |

Name Instance Encoding
axis Axis1 0

AXis2 1

Axis3 2

Axis4 3
scale Off 0

1/64 1

1/128 2

1/256 3

SetPhasePrescale
| 0 axis | E6h |
15 12 11 8 7 0
Data

GetPhasePrescale
| 0 axis | E7h |
15 12 11 8 7 0
Data
read | 0 | scale |
15 2 1 0

SetPhasePrescale controls scaling of the encoder counts before they are used to calculate a
commutation angle for the specified axis. When operated in the pre-scale mode, the motion control IC
can commutate motors with a high number of counts per electrical cycle, such as motors with very high
accuracy encoders.

SetPhasePrescale Off removes the scale factor.

GetPhasePrescale returns the value of the scaling mode.

PMDresult PMDSetPhasePrescale (PMDAxisInterface axis intf,
PMDuintl6 scale);

PMDresult PMDGetPhasePrescale (PMDAxisInterface axis intf,
PMDuintl6* scale)

Dim scale as Short
MagellanAxis.PhasePrescale = scale
scale = MagellanAxis.PhasePrescale

Magellan® Motion Control IC Programmer’'s Command Reference

157




SetPosition buffered 10h

GetPosition 4Ah
A

Syntax SetPosition axis position
GetPosition axis

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
position signed 32 bits 231 to 2311 unity counts
microsteps
Packet SetPosition
Structure | 0 [ axis [ 10h |
15 12 1 8 7 0

First data word
write | position (high-order part) |
31 16
Second data word
write [ position (low-order part) |
15 0

GetPosition
| 0 | axis | 4Ah |
15 12 11 8 7 0
First data word
read | position (high-order part) |
31 16
Second data word

read | position (low-order part) |
15 0

Description SetPosition specifies the trajectory destination of the specified axis. It is used in the Trapezoidal and
S-curve profile modes.

GetPosition reads the contents of the buffered position register.

Restrictions SetPosition is a buffered command. The value set using this command will not take effect until the
next Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

C-Motion API PMDresult PMDSetPosition (PMDAxisInterface axis intf,
PMDint32 position);

PMDresult PMDGetPosition (PMDAxisInterface axis intf,
PMDint32* position)

VB-Motion API Dim position as Long
MagellanAxis.Position = position
position = MagellanAxis.Position

see Set/GetAcceleration (p. 78), Set/GetDeceleration (p. 113), Set/GetJerk (p. 138),
Set/GetVelocity (p. 195), MultiUpdate (p. 63), Update (p. 197)

158 Magellan® Motion Control IC Programmer’'s Command Reference




SetPositionErrorLimit 97h
GetPositionErrorLimit 98h

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

SetPositionErrorLimit axis limit
GetPositionErrorLimit axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
limit unsigned 32 bits 0to23-1 unity counts
microsteps

SetPositionErrorLimit
| 0 | axis | 97h |
15 12 11 8 7 0
First data word
write [ limit (high-order part) |
31 16
Second data word
write | limit (low-order part) |

GetPositionErrorLimit
| 0 [ axis [ 98h |
15 12 N 8 7 0
First data word
read | limit (high-order part) |
31 16
Second data word

read [ limit (low-order part) |
15 0

SetPositionErrorLimit scts the absolute value of the maximum position error allowable by the motion
control IC for the specified axis. If the position error exceeds this limit, a motion error occurs. Such a motion
error can cause a choice of actions, or no action, configurable using the SetEventAction (Motion Error)

command.

When the motor type is microstepping or pulse & direction, this value is set in microsteps or steps,

respectively.

GetPositionErrorLimit returns the value of the position error limit.

PMDresult PMDSetPositionErrorLimit (PMDAxisInterface axis intf,
PMDuint32 l1imit)

PMDresult PMDGetPositionErrorLimit (PMDAxisInterface axis intf,
PMDuint32* 1imit)

Dim limit as Long
MagellanAxis.PositionErrorLimit = limit
limit = MagellanAxis.PositionErrorLimit

GetPositionError (p. 51), GetActualPosition (p. 82), Set/GetPosition (p. 158),
Set/GetEventAction (p. 125)

Magellan® Motion Control IC Programmer’'s Command Reference

159




SetPositionLoop

GetPositionLoo
A P

buffered 67h
68h

Syntax SetPositionLoop axis parameter value
GetPositionLoop axis parameter

Motor Types [DC Brush [ Brushless DC | |
Arguments Name Instance Encoding
axis Axis1 0
AXxis2 1
Axis3 2
Axis4 3
parameter PID Proportional Gain (Kp) 0
PID Integrator Gain (Ki) 1
PID Integrator Limit (llimit) 2
PID Derivative Gain (Kd) 3
PID Derivative Time 4
PID Output Gain (Kout) 5
Velocity Feedforward Gain (Kvff) 6
Acceleration Feedforward Gain (Kaff) 7
Biquad1, Enable Filter 8
Biquad1, CoefficientBO 9
Biquad1, CoefficientB1 10
Biquad1, CoefficientB2 1"
Biquad1, CoefficientA1 12
Biquad1, CoefficientA2 13
Biquad1, CoefficientK 14
Biquad?2, Enable filter 15
Biquad2, CoefficientB0 16
Biquad2, CoefficientB1 17
Biquad2, CoefficientB2 18
Biquad2, CoefficientA1 19
Biquad2, CoefficientA2 20
Biquad2, CoefficientK 21
Type Range/Scaling
value signed 32 bits see below
Packet SetPositionLoop
Structure | 0 axis [ 67h |
15 12 N 8 7 0
First data word
write | parameter |
15 0
Second data word
write | value (high-order part) |
31 16
Third data word
write | value (low-order part) |

160

15 0

Magellan® Motion Control IC Programmer’'s Command Reference




SetPositionLoop (cont.)
GetPositionLoop

buffered

67h
68h

Packet
Structure
(cont.)

Description

GetPositionLoop
| 0 axis | 68h |
15 2 1M 8 7 0
First data word
write | parameter |
15 0
Second data word
read [ value (high-order part) |
31 16
Third data word
read | value (low-order part) |
15 0

Set/GetPositionLoop is used to configure the operating parameters of the PID position loop. See the
product user’s guide for more information on how each parameter is used in the position loop

processing, Though these commands always use 32-bit data, the range and format vary depending on

the parameter, as follows:

Parameter Range Scaling Units
Velocity Feedforward Gain (Kvff) 0to 25— unity gain/cycles
Acceleration Feedforward Gain (Kaff) 0to 251 unity gain/cycles®
PID Proportional Gain (Kp) 0to 21 unity gain
PID Integrator Gain (Ki) 0to25—1 1/256 gain/cycles
PID Derivative Gain (Kd) 0to2'5-] unity gain*cycles
PID Integrator Limit (llimit) 0to23-1 unity count¥cycles
PID Derivative Time | to 25— unity cycles
PID Output Gain (Kout) 0to2'¢—| 100/2'6 % output
Biquad|l, Enable Filter Oto | O=disable,

|=enable
Biquad|, CoefficientBO _215¢0 215 unity
Biquad|l, CoefficientB|1 250 215 unity
Biquad|, CoefficientB2 _215¢0 215 unity
Biquad|, CoefficientAl 2% t0 25| unity
Biquad |, CoefficientA2 _2'5¢t0 25— unity
Biquad|l, CoefficientK 0to2'"°-| unity
Biquad2, Enable Filter Otol 0O=disable,

| =enable
Biquad2, CoefficientBO 250215 unity
Biquad2, CoefficientB 215 ¢0 215 unity
Biquad2, CoefficientB2 250 215 unity
Biquad2, CoefficientAl 250 215 unity
Biquad2, CoefficientA2 2% t0 25| unity
Biquad2, CoefficientK 0to 25— unity

Magellan® Motion Control IC Programmer’'s Command Reference

161




SetPositionLoop (cont.) buffered 67h

A

GetPositionLoop 68h

Restrictions

C-Motion API

VB-Motion API

see

162

Many of these parameters are self-descriptive. However, below are some additional comments on

the use of specific parameters.

. PID Derivative Time has units of cycles. This is the sample time of the axis, as configured
by SetSampleTime. For example, if set to 10, the derivative term will be computed ev-
ery 10 cycles of the axis position loop. PID Integrator Limit has units of count*cycles, and
scaling of unity. This matches the units and scaling of the position loop integrator sum.
For example, a constant position error of 100 counts which is present for 256 cycles will
result an an integrator sum of 100¥256 = 25,600.

. PID Integrator Gain has scaling of 1/256. Thus, a setting of 256 cotresponds to “uni-
ty” integrator gain. From the above example, this would make the integrator sum of
25,600 create a contribution to the PID output of 25,600.

. PID Output Gain is a scaling factor applied to the output of the digital servo filter,
with units of % output. Its default value is 65,535, or approximately 100% output.
To set the scaling to, for example, 50% of output, PID Output Gain would be set to
32,767.

. The biquad coefficients configure the two biquad output filters. If both filters are en-
abled, their outputs are chained (filter] followed by filter2). If filter] is disabled for an
axis, filter2 is also disabled for that axis, regardless of user setting of Biquad2 Enable Fil-
ter. The signed coefficients and unsigned scalar K combine to implement the following
equation, for each filter:

Y, = Kx(ByxX, +B;xX, | +By,xX, ,+A;xY, | xA;,xY, ,)

Where Y, is the filter output at cycle n, and X, is the filter input at cycle n.

Set/GetPositionLoop are buffered commands. All parameters set are buffered, and will not take
effect until an update is done on the position loop (through Update command, MultiUpdate
command, or update action on breakpoint). The values read by GetPositionLoop are the buffered
settings.

PMDresult PMDSetPositionLoop (PMDAxisInterface axis intf,
PMDuintl6 parameter,
PMDint32 value)

PMDresult PMDGetPositionLoop (PMDAxisInterface axis intf,
PMDuintl6 parameter,
PMDint32* value)

MagellanAxis.PositionLoopSet( [in] parameter, [in] value )
MagellanAxis.PositionLoopGet( [in] parameter, [out] value )

Update (p. 197), Set/GetUpdateMask (p. 193), MultiUpdate (p. 63),
Set/GetBreakpointUpdateMask (p. 92), GetPositionLoopValue (p. 52)

Magellan® Motion Control IC Programmer’'s Command Reference




SetProfileMode buffered AQOh
GetProfileMode A1h

Syntax SetProfileMode axis mode
GetProfileMode axis

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
AXis2 1
Axis3 2
Axis4 3
mode Trapezoidal 0
Velocity Contouring 1
S-curve 2
Electronic Gear 3
Packet SetProfileMode
Structure | 0 axis [ AOh |
15 12 1 8 7 0
Data
write | 0 |  mode ]
15 3 2 0

GetProfileMode

| 0 axis | A1h |
15 12 N 8 7 0
Data
read | 0 | mode |
15 3 2 0
Description SetProfileMode sets the profile mode for the specified axis.

GetProfileMode returns the contents of the profile-mode register for the specified axis.

Restrictions SetProfileMode is a buffered command. The value set using this command will not take effect until the
next Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

C-Mntion API PMDresult PMDSetProfileMode (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetProfileMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

VB-Motion API Dim mode as Short
MagellanAxis.ProfileMode = mode
mode = MagellanAxis.ProfileMode

see MultiUpdate (p. 63), Update (p. 197)

Magellan® Motion Control IC Programmer’'s Command Reference

163




SetPWMFrequency 0Ch

A

GetPWMFrequency 0Dh

Syntax

Motor Types

Arguments

Packet
Structure

Description

Atlas

Restrictions

C-Motion API

164

SetPWMFrequency axis frequency

GetPWMFrequency axis
| DC Brush | BrushlessDC | Microstepping |
Name Instance Encoding
axis Axis1 0
AXis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
frequency unsigned 16 bits 0 to 2'6—1 1/28 kHz
SetPWMFrequency
| 0 | axis | 0Ch |
15 12 11 8 7 0
Data
write | frequency |
15 0
GetPWMFrequency
| 0 axis | 0Dh |
15 12 1 8 7 0
Data
read | frequency |
15 0

SetPWMFrequency scts the PWM output frequency (in kHz) for the specified axis. To select one
of the supported frequencies, pass the value listed in the SetPWMFrequency Value column as the
frequency argument to this command.

Approximate PWM bit Actual SetPWMFrequency
Frequency Resolution Frequency Value

20 kHz 10 19.531 kHz 5,000

40 kHz 9 39.062 kHz 10,000

80 kHz 8 78.124 kHz 20,000

These commands are relayed to an attached Atlas amplifier. Atlas supports 20 kHz, 40 kHz, and
80 kHz PWM frequencies.

Only 20 kHz and 80 kHz are currently supported by the Magellan motion control IC. Only 20 kHz
and 40 kHz are supported in the ION products.

The PWM frequency can be changed only when motor output is disabled (e.g,, immediately after
power-up or reset).

PMDresult PMDSetPWMFrequency (PMDAxisInterface axis intf,
PMDuintl6 frequency)

PMDresult PMDGetPWMFrequency (PMDAxisInterface axis intf,
PMDuintlé6* frequency)

Magellan® Motion Control IC Programmer’'s Command Reference




SetPWMFrequency (cont.) 0Ch
GetPWMFrequency 0Dh o

VB-Motion API Dim frequency as Short
MagellanAxis.PWMFrequency = frequency
frequency = MagellanAxis.PWMFrequency

see SetOutputMode (p. 148)

Magellan® Motion Control IC Programmer’'s Command Reference 165




SetSampleTime 3Bh

GetSampleTime 3Ch
A pret

Syntax SetSampleTime time
GetSampleTime

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Type Range Units
time unsigned 32 bits 51 to 2% microseconds
Packet SetSampleTime
Structure | 0 | 3Bh |
15 8 7 0

First data word
write | time (high-order part) |
31 16
Second data word
write [ time (low-order part) |
15 0

GetSampleTime
| 0 | 3Ch |
15 8 7 0
First data word
read | time (high-order part) |
31 16
Second data word
read | time (low-order part) |
15 0

Description SetSampleTime sets the time basis for the motion control IC. This time basis determines the
trajectory update rate for all motor types as well as the servo loop calculation rate for DC brush and
brushless DC motors. It does not, however, determine the commutation rate of the brushless DC

motor types, nor the PWM or current loop rates for any motor type.

The time value is expressed in microseconds. The motion control IC hardware can adjust the cycle
time only in increments of 51.2 microseconds; the time value passed to this command will be

rounded up to the nearest increment of this base value.

Minimum cycle time depends on the product and number of enabled axes as follows:

Minimum Cycle Time

# Enabled Cycle w/ Trace Time Maximum Cycle

Axes Time Capture per Axis Frequency

I (ION) 102.4 ps 102.4 ps 102.4 ps 9.76 kHz

| (Magellan 51.2 ps 102.4 ps 51.2 ps 19.53 kHz (9.76 w/
Single-axis) trace capture)

| (Magellan 102.4 ps 102.4 ps 102.4 ps 9.76 kHz
Multi-axis)

2 (Magellan) 153.6 ps 153.6 ps 76.8 ps 6.51 kHz

3 (Magellan) 204.8 ps 204.8 ps 68.3 ps 4.88 kHz

4 (Magellan) 256 ps 256 ps 64 ps 391 kHz

166 Magellan® Motion Control IC Programmer’'s Command Reference




SetSampleTime (cont.) 3Bh
GetSampleTime 3Ch

L

Description
(cont.)

Restrictions

C-Motion API

VB-Motion API

see

Using the trace feature on single axis Magellan products with the sample time set to 51.2 ps will result

in unexpected behavior.

GetSampleTime returns the value of the sample time.

This command affects the cycle time for all axes on multi-axis configurations.

This command cannot be used to set a sample time lower than the required minimum cycle time for the
current configuration. Attempting to do so will set the sample time to the required minimum cycle time

as specified in the previous table.

PMDresult PMDSetSampleTime (PMDAxisInterface axis intf,
PMDuint32 time)

PMDresult PMDGetSampleTime (PMDAxisInterface axis intf,
PMDuint32* time)

Dim time as Long
MagellanAxis.SampleTime = time
time = MagellanAxis.SampleTime

Magellan® Motion Control IC Programmer’'s Command Reference

167




SetSerialPortMode 8Bh

GetSerialPortMode 8Ch
A

Syntax SetSerialPortMode mode
GetSerialPortMode
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Type Encoding
mode unsigned 16 bits see below
Packet SetSerialPortMode
Structure | 0 [ axis [ 8Bh |
15 8 7 0
Data
write [ multi-dropaddress | 0 | protocol | stopbits | parity | transmission rate |
15 M 10 9 8 7 6 5 4 3 0

GetSerialPortMode

| 0 [ axis [ 8Ch |
15 8 7 0
Data
read [ multi-dropaddress | 0 [ protocol | stop bits | parity [ transmission rate |
15 110 9 8 7 6 5 4 3 0
Description SetSerialPortMode scts the configuration for the asynchronous setial port. It configures the timing and

framing of the serial port on the unit, regardless of whether RS-232 or RS-485 voltage levels are being used.
The response to this command will use the serial port settings in effect before the command is executed,
for example, transmission rate and parity. The new serial port settings must be used for the next command.

GetSerialPortMode returns the configuration for the asynchronous serial port, regardless of
whether RS-232 or RS-485 voltage levels are being used.

The following table shows the encoding of the data used by this command.

Bit Number Name Instance Encoding

0-3 Transmission Rate 1200 baud
2400 baud
9600 baud
19200 baud
57600 baud
115200 baud
230400 baud
460800 baud

4-5 Parity none
odd
even

6 Stop Bits |
2

7-8 Protocol Point-to-point
Multi-drop using idle-line detection
— (Reserved)
— (Reserved)

[1-15 Multi-Drop Address Address 0
Address |

—O|WIN—O(—O|NMN—0O(NOULThWN—O

w i

Address 31

168 Magellan® Motion Control IC Programmer’'s Command Reference




SetSerialPortMode (cont.) 8Bh
GetSerialPortMode 8Ch

Restrictions

CJWOthHIApl PMDresult PMDSetSerialPortMode (PMDAxisInterface axis intf,
PMDuint8 baud,
PMDuint8 parity,
PMDuint8 stopBits,
PMDuint8 protocol,
PMDuint8 multiDropID)

PMDresult PMDGetSerialPortMode (PMDAxisInterface axis intf,

PMDuint8* baud,
PMDuint8* parity,
PMDuint8* stopBits,
PMDuint8* protocol,
PMDuint8* multiDropID)

VB-Motion API CommunicationSerial.SerialPortModeSet( [in] baud,
[in] parity,
[in] stopBits,
[in] protocol,
[in] multidropID )
see

Magellan® Motion Control IC Programmer’'s Command Reference

169




SetSettleTime
GetSettleTime

A

AAh
ABh

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

170

SetSettleTime axis time
GetSettleTime axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
time unsigned 16 bits 0to2'°-1  unity cycles
SetSettleTime
| 0 | axis | AAnh |
15 12 11 8 7 0
Data
write | time |
15 0
GetSettleTime
| 0 axis | ABh |
15 12 11 8 7 0
Data
read | time |

15

SetSettleTime scts the time, in number of cycles, that the specified axis must remain within the

settle window before the Axis Settled indicator in the Activity Status register is set.

GetSettleTime returns the value of the settle time for the specified axis.

PMDresult PMDSetSettleTime (PMDAxisInterface axis intf,
PMDuintl6 time)

PMDresult PMDGetSettleTime (PMDAxisInterface axis intf,
PMDuintl6* time)

Dim time as Short
MagellanAxis.SettleTime = time
time = MagellanAxis.SettleTime

Set/GetMotionCompleteMode (p. 139), Set/GetSettleWindow (p. 171),
GetActivityStatus (p. 28)

Magellan® Motion Control IC Programmer’'s Command Reference




SetSettleWindow
GetSettleWindow

BCh
BDh

Syntax SetSettleWindow axis window
GetSettleWindow axis
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
window unsigned 16 bits 0to2'°-1  unity counts
Packet SetSettleWindow
Structure | 0 | axis | BCh |
15 12 1 8 7 0
Data
write | window |
15 0
GetSettleWindow
| 0 axis | BDh |
15 12 1 8 7 0
Data
read | window |
15 0
Description SetSettleWindow scts the position range within which the specified axis must remain for the duration

specified by SetSettleTime before the Axis Settled indicator in the Activity Status register is set.

GetSettleWindow returns the value of the settle window.

Restrictions

PMDuintl6 window)

PMDuintl6* window)

C-Motion API PMDresult PMDSetSettleWindow (PMDAxisInterface axis intf,
PMDresult PMDGetSettleWindow (PMDAxisInterface axis intf,
VB-Motion API Dim window as Short
MagellanAxis.SettleWindow = window
window = MagellanAxis.SettleWindow
see

Magellan® Motion Control IC Programmer’'s Command Reference

Set/GetMotionCompleteMode (p. 139), Set/GetSettleTime (p. 170), GetActivityStatus (p. 28)

171




SetSignalSense A2h

GetSignalSense A3h
A i

Syntax SetSignalSense axis sense
GetSignalSense axis

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0

AXis2 1

Axis3 2

Axis4 3

Indicator Encoding Bit Number

sense EncoderA 0001h 0

EncoderB 0002h 1

Encoder Index 0004h 2

Capture Input 0008h 3

Positive Limit 0010h 4

Negative Limit 0020h 5

Axisin 0040h 6

HallA 0080h 7

HallB 0100h 8

HallC 0200h 9

AxisOut 0400h 10

Step Output/SPI Enable 0800h 11

Motor Direction 1000h 12

— (Reserved) 13-15
Packet SetSignalSense
Structure | 0 | axis | A2h |

15 12 1 8 7 0
Data
write | 0 | sense |
15 13 12 0

GetSignalSense

| 0 | axis | A3h |
15 12 1 8 7 0
Data
read | 0 | sense |
15 13 12 0
Description SetSignalSense establishes the sense of the corresponding bits of the Signal Status register, with

the addition of Step Output and Motor Direction, for the specified axis.

For Encoder Index, if the sense bit is 1, an index will be recognized for use in index-based phase
correction if the index is high.

For the Capture Input, if the sense bit is 1, a capture will occur on a low-to-high signal transition.

Otherwise, a capture will occur on a high-to-low transition.

For Positive Limit and Negative Limit: if the sense bit is 1, an overtravel condition will occur if the
signal is high. Otherwise, an overtravel condition will occur when the signal is low.

172 Magellan® Motion Control IC Programmer’'s Command Reference




SetSignalSense (cont.) A2h

GetSignalSense A3h o

Description The AxisOut signal is inverted if the sense bit is set to one; otherwise it is not inverted.

(cont.) When the Step Output/SPI Enable bit is set to 1, a step will be generated by the motion control IC with

a low-to-high transition on the Pulse signal. Otherwise, a step will be generated by the motion control
IC with a high-to-low transition on the Pulse signal.

For non-MC58113 motion control ICs, the same bit is used to control the sense of the SPI Enable signal,
either in SPI DAC or in Atlas SPI output mode. When the bit is set the Enable signal will be held low
when addressing the SPI output device, otherwise it will be held high. When driving an Atlas amplifier
this bit must be set. Setting the Motor Direction bit has the effect of swapping the sense of positive and
negative motor movement.

For MC58113, the signal sense for SPI Enabler is active low for Atlas and active high for SPI DAC.
GetSignalSense returns the value of the Signal Sense mask.

Atlas No additional Atlas communication is performed for these commands. Atlas communication will fail

if bit 11 is not propetly set.
Restrictions In ION products, FaultOut and /Enable exist in the Signal Status register, but their sense is not
controllable.

In ION products, when the Capture Source is set to Encoder Index, only the Encoder Index bit of signal
sense should be used to configure its polarity. The Capture Input bit of Signal Sense should always be
cleared to zero (0) in this case.

Not all bits are implemented for all products. See the product user’s guide.
For Atlas these signals are not included in the Magellan signal status register.
C-Motion API PMDresult PMDSetSignalSense (PMDAxisInterface axis intf,
PMDuintl6é sense)

PMDresult PMDGetSignalSense (PMDAxisInterface axis intf,
PMDuintl6* sense)

VB-Motion API Dim sense as Short
MagellanAxis.SignalSense = sense
sense = MagellanAxis.SignalSense

see GetSignalStatus (p. 53)

Magellan® Motion Control IC Programmer’'s Command Reference 173




SetSPIMode 0Ah

GetSPIMode 0Bh
A

Syntax SetSPIMode mode
GetSPIMode
Motor Types [ DCBrush | [ |
Arguments Name Instance Encoding
mode RisingEdge 0
RisingEdgeDelay 1
FallingEdge 2
FallingEdgeDelay 3
Packet SetSPIMode
Structure | 0 | 0Ah |
15 8 7 0
Data
write | 0 | mode |
15 2 1 0
GetSPIMode
| 0 | 0Bh |
15 8 7 0
Data
read | 0 | mode |
15 2 1 0
Description SetSPIMode configures the communication settings for the motion control IC’s SPI (Serial

Peripheral Interface) DAC output port. Data is output as a series of 16-bit data words transmitted
at 10 Mbps. The mode parameter controls the data clocking scheme as shown in the following table.

Mode Encoding Description

RisingEdge 0 Rising edge without phase delay: The SPIClock signal is inactive low. The
SPIXmt pin transmits data on the rising edge of the SPIClock signal.

RisingEdgeDelay | Rising edge with phase delay: The SPIClock signal is inactive low. The
SPIXmt pin transmits data one half-cycle ahead of the rising edge of
the SPIClock signal.

FallingEdge 2 Falling edge without phase delay: The SPIClock signal is inactive high. The
SPIXmt pin transmits data on the falling edge of the SPIClock signal.

FallingEdgeDelay 3 Falling edge with phase delay: The SPIClock signal is inactive high. The
SPIXmt pin transmits data one half-cycle ahead of the falling edge of
the SPIClock signal.

Atlas No additional Atlas communication is performed for these commands. When using Atlas output
the SPI mode must be zero.

Restrictions SPI output is only available when the motor type is DC brush, and only in some products. See the
product user’s guide.

C-Motion API PMDresult PMDSetSPIMode (PMDAxisInterface axis intf, PMDuintlé mode)
PMDresult PMDGetSPIMode (PMDAxisInterface axis intf, PMDuintlé6* mode)

VB-Motion API Dim mode as Short
MagellanObject.SPIMode = mode
mode = MagellanObject.SPIMode

see SetOutputMode (p. 148)

174 Magellan® Motion Control IC Programmer’'s Command Reference




SetStartVelocity 6Ah
GetStartVelocity 6Bh

Syntax SetStartVelocity axis velocity
GetStartVelocity axis
Motor Types | | | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Range Scaling Units
velocity unsigned 32 bits 0 to 2%'—1 1/2'® steps/cycle
microsteps/cycle
Packet SetStartVelocity
Structure | 0 [ axis [ 6Ah |
15 12 11 8 7 0

First data word
write | velocity (high-order part) |
31 16
Second data word
write | velocity (low-order part) |

GetStartVelocity
| 0 | axis | 6Bh |
15 12 11 8 7 0

First data word

read | velocity (high-order part) |
31 16

Second data word
read | velocity (low-order part) |
15 0

Description SetStartVelocity loads the starting velocity register for the specified axis. The start velocity is the
instantaneous velocity at the start and at the end of the profile.

GetStartVelocity reads the value of the starting velocity register.

Scaling example: To load a starting velocity value of 1.750 steps/cycle muldply by 65,536 (giving
114,688) and load the resultant number as a 32-bit number, giving 0001 in the high word and CO00h in
the low word. Values returned by GetStartVelocity must correspondingly be divided by 65,536 to

convert them to units of counts/cycle.
Restrictions SetStartVelocity is only used in the Velocity Contouring and Trapezoidal profile modes.

C-Motion API PMDresult PMDSetStartVelocity (PMDAxisInterface axis intf,
PMDuint32 velocity)

PMDresult PMDGetStartVelocity (PMDAxisInterface axis intf,
PMDuint32* velocity)

VB-Motion API Dim velocity as Long
MagellanAxis.StartVelocity = velocity
velocity = MagellanAxis.StartVelocity

see Set/GetVelocity (p. 195), Set/GetAcceleration (p. 78), Set/GetDeceleration (p. 113),
Set/GetPosition (p. 158)

Magellan® Motion Control IC Programmer’'s Command Reference 175




SetStepRange CFh

GetStepRange CEh
& phang

Syntax SetStepRange axis range
GetStepRange axis
Motor Types | [ [ [ Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
range 0-4.98 Msteps/sec 1
0-622.5 ksteps/sec 4
0-155.6 ksteps/sec 6
0-38906 steps/sec 8
Packet SetStepRange
Structure | 0 [ axis | CFh |
15 12 1 8 7 0
Data
write | 0 | range |
15 43 0
GetStepRange
| 0 axis CEh |
15 12 1 8 7 0
Data
read | 0 | range |
15 43 0
Description SetStepRange scts the maximum pulse rate frequency for the specified axis. For example, if the
desired maximum pulse rate is 200,000 pulses/second, the SetStepRange 6 command should be
issued.
GetStepRange returns the maximum pulse rate frequency for the specified axis.
Restrictions The MC55110 and the MC58110 have a maximum step range of 100 Kstep/s, which cannot be
changed. The MC58113 has a maximum step range of 1 Mstep/s which cannot be changed.
SetStepRange must be called before any moves are made, and must not be called after any moves
have been made.
C-Motion API PMDresult PMDSetStepRange (PMDAxisInterface axis intf,
PMDuintl6 range)
PMDresult PMDGetStepRange (PMDAxisInterface axis intf,
PMDuintl6* range)
VB-Motion API Dim range as Short
MagellanAxis.StepRange = range
range = MagellanAxis.StepRange
see

176 Magellan® Motion Control IC Programmer’'s Command Reference




SetStopMode
GetStopMode

buffered

DOh
D1h

L

Syntax SetStopMode axis mode

GetStopMode axis

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
mode No Stop 0
Abrupt Stop 1
Smooth Stop 2
Packet SetStopMode
Structure | 0 axis [ DOh |
15 12 11 8 7 0
Data
write | 0 | mode |
15 2 1 0
GetStopMode
| 0 axis | D1h |
15 12 11 8 7 0
Data
read | 0 | mode |
15 1 0
Description SetStopMode stops the specified axis. The available stop modes ate Abrupt Stop, which instantly

(without any deceleration phase) stops the axis; Smooth Stop, which uses the programmed deceleration

value and profile shape for the current profile mode to stop the axis; or No Stop, which is generally used

to turn off a previously issued set stop command.

Note: After an Update, a buffered stop command (SetStopMode command) will reset to the No Stop
condition. In other words, if the SetStopMode command is followed by an Update command and then
by a GetStopMode command, the retrieved stop mode will be No Stop.

GetStopMode returns the value of the stop mode.

Restrictions Smooth Stop mode is not available in the Electronic Gear profile mode.

SetStopMode is a buffered command. The value set using this command will not take effect until the

next Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

C-Motion API PMDresult PMDSetStopMode (PMDAxisInterface axis intf, PMDuintl6 mode)
PMDresult PMDGetStopMode (PMDAxisInterface axis intf, PMDuintl6* mode)

VB-Motion API Dim mode as Short

MagellanAxis.StopMode

mode

mode = MagellanAxis.StopMode

see MultiUpdate (p. 63), Update (p. 197)

Magellan® Motion Control IC Programmer’'s Command Reference

177




SetSynchronizationMode F2h

GetSynchronizationMode F3h
A Y

Syntax SetSynchronizationMode mode
GetSynchronizationMode

Motor Types [ DCBrush | BrushlessDC | Microstepping |
Arguments Name Instance Encoding
mode Disabled 0
Master 1
Slave 2
Packet SetSynchronizationMode
Structure | 0 | F2h |
15 8 7 0
Data
write | 0 | mode |
15 2 1 0

GetSynchronizationMode

| 0 | F3h |
15 8 7 0
Data
read | 0 | mode |
15 2 1 0
Description SetSynchronizationMode sects the mode of the pin used for the synchronization of the internal

timer across multiple motion ICs. In the Disabled mode, the pin is configured as an input and is not
used. In the Master mode, the pin outputs a synchronization pulse that can be used by slave nodes
ot other devices to synchronize with the internal chip cycle of the master node. In the Slave mode,

the pin is configured as an input and a pulse on the pin synchronizes the internal chip cycle.

When the synchronization mode is set to either Master or Slave, the internal time counter will be
set to zero. This feature is intended to allow synchronization of updates across processors by using

time breakpoints.
GetSynchronizationMode returns the value of the synchronization mode.
Restrictions If the motion control IC is configured as a slave, and any axis is configured for pulse & direction
output, multi-chip synchronization cannot be used.
Multichip synchronization is not supported in all products. See the product user’s guide.
C-Motion API PMDresult PMDSetSynchronizationMode (PMDAxisInterface axis intf,
PMDuintl6 mode)

PMDresult PMDGetSynchronizationMode (PMDAxisInterface axis intf,
PMDuintl6* mode)

VB-Motion API Dim mode as Short
MagellanObject.SynchronizationMode = mode
mode = MagellanObject.SynchronizationMode

see GetTime (p. 56), SetBreakPoint (p. 89)

178 Magellan® Motion Control IC Programmer’'s Command Reference




SetTraceMode BOh
GetTraceMode B1h

Syntax SetTraceMode mode
GetTraceMode
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
mode 16-bit unsigned see below
Packet SetTraceMode
Structure | 0 [ BOh |
15 8 7 0
Data
write | mode \
15 0
GetTraceMode
| 0 [ B1h |
15 8 7 0
Data
read | mode \
15 10
Description SetTraceMode sets the behavior for the next trace. Mode is a bitmask, as shown below:
Name Bit
Wrap Mode (0]
- (Reserved) 1-7
Trigger Mode 8
- (Reserved) 9-15

Wrap mode may be either One Time (zero), or Rolling Buffer (one). In One Time mode, the trace
continues until the trace buffer is filled, then stops. In Rolling Buffer mode, the trace continues from
the beginning of the trace buffer after the end is reached. When in rolling mode, values stored at the
beginning of the trace buffer are lost if they are not read before being overwritten by the wrapped data.

Trigger mode may be either Internal (zero), or External (one). This mode is used to control tracing on
attached Atlas amplifiers. In Internal trigger mode the trace bit in all Atlas torque commands will be set
whenever Magellan trace is active. In this mode Atlas should be configured to use its own internal trace
period to time trace samples. In External mode the trace bit in all Atlas torque commands will be set
exactly once each time Magellan stores a trace sample, and clear at other times. In this mode Atlas

should be configured to use its external trigger mode to synchronize sampling with Magellan.

GetTraceMode returns the value for the trace mode.

Atlas No additional Atlas communication is performed for these commands, but the Atlas trace mode, and
other trace parameters may have to be set by addressing an Atlas amplifier directly. See A#las Digital
Amplifier Complete Technical Reference for more detail.

Restrictions

Magellan® Motion Control IC Programmer’'s Command Reference

179




SetTraceMode (cont.) BOh

GetTraceMode B1h
A

C-Motion API PMDresult PMDSetTraceMode (PMDAxisInterface axis intf, PMDuintl6é mode)
PMDresult PMDGetTraceMode (PMDAxisInterface axis intf, PMDuintlé* mode)

VB-Motion API Dim mode as Short
MagellanObject.TraceMode = mode
mode = MagellanObject.TraceMode

see GetTraceStatus (p. 58)

Magellan® Motion Control IC Programmer’'s Command Reference

180




SetTracePeriod B8h
GetTracePeriod B9h

Syntax

Motor Types

Arguments

Packet
Structure

Description

Atlas

Restrictions

C-Motion API

VB-Motion API

see

SetTracePeriod period
GetTracePeriod

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Type Range Scaling Units
period unsigned 16 bits 11021  unity cycles

SetTracePeriod

| 0 [ Bsh |
15 8 7 0
Data
write | period |
15 0

GetTracePeriod

| 0 | B9h |
15 8 7 0
Data
read | period |
15 0

SetTracePeriod sets the interval between contiguous trace captures. For example, if the trace period is
set to one, trace data will be captured at the end of every chip cycle. If the trace period is set to two, trace

data will be captured at the end of every second chip cycle, and so on.

GetTracePeriod returns the value for the trace period.

No additional Atlas communication is performed for these commands, but Atlas trace parameters may
have to be set by addressing an Atlas amplifier directly. Atlas trace may be synchronized to Magellan
trace by using the "external trigget" trace mode, which is done using the trace bit in each Atlas torque
command. See Atlas Digital Amplifier Complete Technical Reference for more detail.

PMDresult PMDSetTracePeriod (PMDAxisInterface axis intf,
PMDuintl6 period);

PMDresult PMDGetTracePeriod (PMDAxisInterface axis intf,
PMDuintl6* period)

Dim period as Short
MagellanObject.TracePeriod = period
period = MagellanObject.TracePeriod

Set/GetSampleTime (p. 166), Set/GetTraceStart (p. 182), Set/GetTraceStop (p. 185)

Magellan® Motion Control IC Programmer’'s Command Reference

181




SetTraceStart B2h

GetTraceStart B3h
A

Syntax SetTraceStart triggerAxis condition triggerBit triggerState
GetTraceStart
Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
triggerAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3
condition Immediate 0
Next Update 1
Event Status 2
Activity Status 3
Signal Status 4
Drive Status 5
triggerBit Status Register Bit 0to15
triggerState (tS)  Triggering State of the Bit 0 (value = 0)
1 (value = 1)
Packet SetTraceStart
Structure | 0 [ B2h |
15 8 7 0
Data
write | 0 | tS ] triggerBit | condition | triggerAxis |
15 13 12 11 8 7 4 3 0
GetTraceStart
| 0 [ B3h |
15 8 7 0
Data
read | 0 | S]] triggerBit | condition | triggerAxis |
15 13 12 11 8 7 4 3 0
Description SetTraceStart scts the condition for starting the trace. The Immediate condition requires no axis

to be specified and the trace will begin upon execution of this instruction. The other four conditions

require an axis to be specified, and when the condition for that axis is attained, the trace will begin.

When a status register bit is the trigger, the bit number and state must be included in the argument.
The trace is started when the indicated bit reaches the specified state (0 or 1).

GetTraceStart returns the value of the trace-start trigger.

Once a trace has started, the trace-start trigger is reset to zero (0).

182 Magellan® Motion Control IC Programmer’'s Command Reference




B2h
B3h

SetTraceStart (cont.)

GetTraceStart
etTraceStar o

Description

The following table shows the corresponding value for combinations of triggerBit and register0.

(cont.) Activity
Event Status Status Signal Status Drive Status
TriggerBit Register Register Register Register
0 Motion Complete Phasing Initialized Encoder A
| Worap-around At Maximum Encoder B In Foldback
Velocity
2 Breakpoint | Tracking Encoder Index Overtemperature
3 Position Capture Capture Input Shunt Active
4 Motion Error Positive Limit In Holding
5 Positive Limit Negative Limit Overvoltage
6 Negative Limit Axisln Undervoltage
7 Instruction Error Axis Settled Hall Sensor A Atlas Disabled
8 Disable Motor mode Hall Sensor B
9 Overtemperature Position Capture  Hall Sensor C
Fault
0Ah Drive Exception In Motion
0Bh Commutation Error  In Positive Limit
0Ch Current Foldback In Negative Limit Clipping
0Dh /Enable Input
OEh Breakpoint 2 FaultOut
OFh Atlas not
connected

Examples:
If it is desired that the trace begin on the next Update for axis 3, then a 2 is set for the axis number, a 1
is set for the condition, and bit number and state can be loaded with zeroes since they are not used. The
actual data word sent to the motor processor in this case is 0012h.
If it is desired that the trace begin when bit 7 of the Activity Status register for axis 2 goes to 0, then the trace
start is loaded as follows: A 1 is loaded for axis numbet, a 3 is loaded for condition, a 7 is loaded for bit number,
and a 0 is loaded for state. The actual data word sent to the motor processor is 0731h.

Atlas No additional Atlas communication is performed for these commands, but Atlas trace parameters may

Restrictions

have to be set by addressing an Atlas amplifier directly. Magellan trace start is signaled to Atlas by using
the trace bit in each Atlas torque command, See A#as Digital Amplifier Complete Technical Reference for more

detail.

Not all trace start conditions are available in all products. See the product user’s guide.

C-Motion API

PMDresult PMDSetTraceStart (PMDAxisInterface axis intf,
PMDAxis traceAxis,
PMDuint8 condition,
PMDuint8 triggerBit,
PMDuint8 triggerState)

PMDresult PMDGetTraceStart (PMDAxisInterface axis intf,
PMDAxis* traceAxis,
PMDuint8* condition,
PMDuint8* triggerBit,
PMDuint8* triggerState)

183

Magellan® Motion Control IC Programmer’'s Command Reference




SetTraceStart (cont.) B2h
GetTraceStart B3h
A

VB-Motion API MagellanObject.TraceStartSet( [in] triggerAxis,

[in] condition,
[in] triggerBit,
[in] triggerState )
MagellanObject.TraceStartGet( [out] triggerAxis,
[out] condition,
[out] triggerBit,
[out] triggerState )
see Set/GetBufferLength (p. 96), GetTraceCount (p. 57), Set/GetTraceMode (p. 179),
Set/GetTracePeriod (p. 181), Set/GetTraceStop (p. 185)

184

Magellan® Motion Control IC Programmer’'s Command Reference




SetTraceStop Bah
GetTraceStop Bbh

Syntax

Motor Types

Arguments

Packet
Structure

Description

SetTraceStop friggerAxis condition triggerBit triggerState

GetTraceStop
| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Instance Encoding
triggerAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3
condition Immediate 0
Next Update 1
Event Status 2
Activity Status 3
Signal Status 4
Drive Status 5
triggerBit Status Register Bit 0to15
triggerState (tS) Triggering State of the Bit 0 (value = 0)
1 (value = 1)
SetTraceStop
| 0 | Bah |
15 8 7 0
Data
write | 0 | tS] triggerBit | condition | triggerAxis |
15 13 12 11 8 7 4 3 0
GetTraceStop
| 0 [ B5h |
15 8 7 0
Data
read | 0 | tS] triggerBit | condition | triggerAxis |
15 13 12 11 8 7 4 3 0

SetTraceStop scts the condition for stopping the trace. The Immediate condition requitres no axis to be
specified and the trace will stop upon execution of this instruction. The other four conditions require

an axis to be specified, and when the condition for that axis is attained, the trace will stop.

When a status register bit is the trigger, the bit number and state must be included in the argument. The
trace is stopped when the indicated bit reaches the specified state (0 or 1).

GetTraceStop returns the value of the trace-stop trigger.

Once a trace has stopped, the trace-stop trigger is reset to zero (0).

Magellan® Motion Control IC Programmer’'s Command Reference

185




B4h
Bbh

SetTraceStop (cont.)

GetTraceSto
A P

Description The following table shows the corresponding value for combinations of triggerBit and register.
(cont.) Activity
Event Status Status Signal Status Drive Status
TriggerBit Register Register Register Register
0 Motion Complete Phasing Initialized Encoder A
I Wrap-around At Maximum Encoder B In Foldback
Velocity
2 Breakpoint | Tracking Encoder Index Overtemperature
3 Position Capture Capture Input Shunt Active
4 Motion Error Positive Limit In Holding
5 Positive Limit Negative Limit Overvoltage
6 Negative Limit AxisIn Undervoltage
7 Instruction Error Axis Settled Hall Sensor A Atlas Disabled
8 Disable Motor mode Hall Sensor B
9 Overtemperature Position Capture  Hall Sensor C
Fault
0Ah Drive Exception In Motion
0Bh Commutation Error  In Positive Limit
0Ch Current Foldback In Negative Limit Clipping
0Dh /Enable Input
OEh Breakpoint 2 FaultOut
OFh Atlas not
connected
Examples:
If it is desired that the trace ends on the next Update for axis 3, then a 2 is set for the axis number,
a 1 is set for the condition, and bit number and state can be loaded with zeroes since they are not
used. The actual data word sent to the motor processor in this case is 0012h.
If it is desired that the trace ends when bit 7 of the Activity Status register for axis 2 goes to 0, then the
trace stop is loaded as follows: A 1 is loaded for axis number, a 3 is loaded for condition, a 7 is loaded for
bit number, and a O is loaded for state. The actual data word sent to the motor processor in this case is
0731h.
Atlas No additional Atlas communication is performed for these commands, but Atlas trace parameters

may have to be set by addressing an Atlas amplifier directly. Magellan trace stop is signaled to Atlas
by using the trace bit in each Atlas torque command, See A#as Digital Amplifier Complete Technical
Reference for more detail.

Restrictions

C-Motion API

Not all trace stop conditions are available in all products. See the product user’s guide.

PMDresult PMDSetTraceStop (PMDAxisInterface axis intf,
PMDAx1is traceAxis,
PMDuint8 condition,
PMDuint8 triggerBit,
PMDuint8 triggerState)

PMDresult PMDGetTraceStop (PMDAxisInterface axis intf,
PMDAxXis* traceAxis,
PMDuint8* condition,
PMDuint8* triggerBit,
PMDuint8* triggerState)

186

Magellan® Motion Control IC Programmer’'s Command Reference




SetTraceStop (cont.) B4h
GetTraceStop Bbh

VB-Motion API MagellanObject.TraceStopSet( [in] triggerAxis,
[in] condition,
[in] triggerBit,
[in] triggerState )

MagellanObject.TraceStopGet ( [out] triggerAxis,

[out] condition,
[out] triggerBit,
[out] triggerState )

see GetTraceCount (p. 57), Set/GetTraceStart (p. 182), GetTraceStatus (p. 58)

Magellan® Motion Control IC Programmer’'s Command Reference 187




SetTraceVariable B6h

GetTraceVariable B7h
A

Syntax SetTraceVariable variableNumber traceAxis variablelD
GetTraceVariable variableNumber

Motor Types | DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Arguments Name Instance Encoding
variableNumber Variable1 0
Variable2 1
Variable3 2
Variable4 3
traceAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3
variablelD
Trajectory Generator Commanded Position 2
Commanded Velocity 3
Commanded Acceleration 4
Encoder Actual Position 5
Actual Velocity 6
Position Capture Register 9
Phase Angle 15
Phase Offset 16
Position Loop Position Error 1
Position Loop Integrator Sum 10
Position Loop Integrator Contribution 57
Position Loop Derivative 11
Biquad1 Input 64
Biquad2 Input 65
Status Registers Event Status Register 12
Activity Status Register 13
Signal Status Register 14
Drive Status Register 56
Drive Fault Status Register 79
Commutation/Phasing Active Motor Command 7
Phase A Command 17
Phase B Command 18
Phase C Command 19
Phase Angle Scaled 29
Current Loops Phase A Reference 66
Phase A Error 30
Phase A Actual Current 31
Phase A Integrator Sum 32
Phase A Integrator Contribution 33
Current Loop A Output 34
Phase B Reference 67
Phase B Error 35
Phase B Actual Current 36
Phase B Integrator Sum 37
Phase B Integrator Contribution 38
Current Loop B Output 39

188 Magellan® Motion Control IC Programmer’'s Command Reference




SetTraceVariable (cont.)

B6h

GetTraceVariable B7h
Arguments Current Loops (cont.)
(cont.) D Feedback 40
Q Feedback 48
Leg A Current 69
Leg B Current 70
Leg C Current 71
Leg D Current 72
Field Oriented Control D Reference 40
D Error 41
D Feedback 42
D Integrator Sum 43
D Integrator Contribution 44
D Output 45
Q Reference 46
Q Error 47
Q Feedback 48
Q Integrator Sum 49
Q Integrator Contribution 50
Q Output 51
FOC Alpha Output 52
FOC Beta Output 53
Phase Alpha Actual Current 73
Phase Beta Actual Current 74
Motor Output Bus Voltage 54
Temperature 55
Foldback Energy 68
Bus Current Supply 86
Bus Current Return 87
PWM Output A 75
PWM Output B 76
PWM Output C 77
Analog Inputs Analog Input0 20
Analog Input1 21
Analog Input2 22
Analog Input3 23
Analog Input4 24
Analog Inputb 25
Analog Input6 26
Analog Input7 27
Miscellaneous None (disable variable) 0
Motion Control IC Time 8

Magellan® Motion Control IC Programmer’'s Command Reference

189




A

SetTraceVariable (cont.) B6h
GetTraceVariable B7h

190

Packet
Structure

Description

Atlas

Restrictions

C-Motion API

SetTraceVariable

| 0 | B6h |
15 8 7 0
First data word
write | 0 | variableNumber |
15 2 1 0
Second data word
write | variablelD | 0 | traceAxis |
15 8 7 43 0
GetTraceVariable
| 0 | B7h |
15 8 7 0
First data word
write | 0 | variableNumber |
15 2 1 0
Second data word
read | variablelD | 0 | traceAxis |
15 8 7 4 3 0

SetTraceVariable assigns the given variable to the specified variableNumber location in the trace

buffer. Up to four variables may be traced at one time.
All variable assignments must be contiguous starting with variableNumber = 0.
GetTraceVariable returns the variable and axis of the specified variableNumber.

Example: To set up a three variable trace capturing the commanded acceleration for axis 1, the
actual position for axis 1, and the event status word for axis 3, the following sequence of commands
would be used. First, a SetTraceVariable command with variableNumber of 0, axis of 0, and
variablelD of 4 would be sent. Then, a SetTraceVariable command with variableNumber of 1, axis
of 0, and variableID of 5 would be sent. Finally, a SetTraceVariable command with a
variableNumber of 3, axis of 2 and variableID of Oh would be sent.

No additional Atlas communication is performed for these commands, but Atlas trace parameters
may have to be set by addressing an Atlas amplifier directly. See Atlas Digital Amplifier Complete
Technical Reference for more detail.

When selecting ActualVelocity as a trace variable, the reported value is the change in position

between trace captures.

In FOC (Field Otiented Control) mode, A/B cutrent values ate not meaningful. Select D/Q

current values instead.

Not all trace variables atre available in all products. See the product uset’s guide.

PMDresult PMDSetTraceVariable (PMDAxisInterface axis intf,
PMDuintl6 variableNumber,
PMDAxis traceAxis,
PMDuint8 variablelID)

PMDresult PMDGetTraceVariable (PMDAxisInterface axis intf,
PMDuintl6 variableNumber,
PMDAxis* traceAxis,
PMDuint8* variableID)

Magellan® Motion Control IC Programmer’'s Command Reference




SetTraceVariable (cont.) B6h
GetTraceVariable B7h

VB-Motion API MagellanObject.TraceVariableSet( [in] variableNumber,
[in] traceAxis,
[in] variableID )
MagellanObject.TraceVariableGet ( [in] variableNumber,
[out] traceAxis,
[out] variableID )

see SetTracePeriod (p. 181), SetTraceStart (p. 182), SetTraceStop (p. 185)

Magellan® Motion Control IC Programmer’'s Command Reference

191




192

SetTrackingWindow A8h
GetTrackingWindow A9h

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

SetTrackingWindow axis window
GetTrackingWindow axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Instance Encoding
axis Axis1 0

AXis2 1

AXis3 2

Axis4 3

Type Range Scaling Units
window unsigned 16 bits 0to2'°-1  unity counts

SetTrackingWindow

| 0 | axis | A8h |
15 12 1 8 7 0
Data
write | window |
15 0
GetTrackingWindow
| 0 axis | A9h |
15 12 1 8 7 0
Data
read | window |
15 0

SetTrackingWindow sects boundaries for the position error of the specified axis. If the absolute
value of the position error exceeds the tracking window, the tracking indicator (bit 2 of the Activity
Status register) is set to 0. When the position error returns to within the window, the tracking

indicator is set to 1.

GetTrackingWindow returns the value of the tracking window.

PMDresult PMDSetTrackingWindow (PMDAxisInterface axis intf,
PMDuintl6 window)

PMDresult PMDGetTrackingWindow (PMDAxisInterface axis intf,
PMDuintl6* window)

Dim window as Short
MagellanAxis.TrackingWindow = window
window = MagellanAxis.TrackingWindow

GetActivityStatus (p. 28), GetActualPosition (p. 80)

Magellan® Motion Control IC Programmer’'s Command Reference




SetUpdateMask F9h
GetUpdateMask FAh

Syntax SetUpdateMask axis mask
GetUpdateMask axis
Motor Types [ DC Brush [ Brushless DC [ Microstepping [ Pulse & Direction
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Type Scaling
mask unsigned 16 bit bitmask
Packet SetUpdateMask
Structure | 0 [ axis [ F9n |
15 12 1 8 7 0

First data word
write | mask |

15 0
GetUpdateMask
| 0 axis | FAh |
15 12 1" 8 7 0
First data word
read [ mask |
15 0
Description SetUpdateMask configures what loops in the axis are updated when an update is executed on the given

axis. If the bitmask for a given loop is set in the mask, the operating parameters for that loop will be
updated from the buffered values when an Update or MultiUpdate command is received. The bitmask

encoding is given below.

Name Bit(s) Description

Trajectory 0 Set to | to update trajectory from buffered parameters.
Position Loop I Set to | to update position loop from buffered parameters.
— 2 Reserved

Current Loop 3 Set to | to update current loop from buffered parameters.
— 4-15 Reserved

For example, if the update mask for a given axis is set to hexadecimal 0003h, the trajectory and position
loop parameters will be updated from their buffered values when an Update or MultiUpdate command
is received for that axis.

The Current Loop bit applies regardless of the active current control mode. When it is set, an Update
or MultiUpdate command will update either the active FOC parameters, or the active digital current

loop parameters, depending on which Current Control mode is active.

GetUpdateMask gets the update mask for the indicated axis.

Magellan® Motion Control IC Programmer’'s Command Reference

193




A

194

SetUpdateMask (cont.)
GetUpdateMask

F9h
FAh

Restrictions

C-Motion API

VB-Motion API

see

The current loop bit is only valid for products that include a current loop.

PMDresult PMDSetUpdateMask (PMDAxisInterface axis intf,
PMDuintl6 mask)

PMDresult PMDGetUpdateMask (PMDAxisInterface axis intf,
PMDuintl6* mask)

Dim mask as Short
MagellanAxis.UpdateMask = mask
mask = MagellanAxis.UpdateMask

Set/GetBreakpointUpdateMask (p. 193), Update (p. 197), MultiUpdate (p. 63)

Magellan® Motion Control IC Programmer’'s Command Reference




SetVelocity
GetVelocity

buffered 11h
4Bh

Syntax

Motor Types

Arguments

Packet
Structure

Description

Restrictions

SetVelocity axis velocity
GetVelocity axis

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction |
Name Instance Encoding
axis Axis1 0

Axis2 1

Axis3 2

Axis4 3

Type Range Scaling Units
velocity signed 32 bits 281t0 2%  1/2'° counts/cycle

microsteps/cycle

SetVelocity
| 0 | axis | 11h |
15 12 11 8 7 0
First data word
write | velocity (high-order part) |
31 16
Second data word
write | velocity (low-order part) |

GetVelocity
| 0 | axis | 4Bh |
15 12 11 8 7 0
First data word
read | velocity (high-order part) |
31 16
Second data word

read | velocity (low-order part) |
15 0

SetVelocity loads the maximum velocity buffer register for the specified axis.
GetVelocity returns the contents of the maximum velocity buffer register.

Scaling example: To load a velocity value of 1.750 counts/cycle, multiply by 65,536 (giving 114,688)
and load the resultant number as a 32-bit number; giving 0001 in the high word and CO00h in the low
word. Numbers returned by GetVelocity must correspondingly be divided by 65,536 to convert to units
of counts/cycle.

SetVelocity may not be issued while an axis is in motion with the S-curve profile.

SetVelocity is not valid in Electronic Gear profile mode.

The velocity cannot be negative, except in the Velocity Contouring profile mode.

SetVelocity is a buffered command. The value set using this command will not take effect until the next
Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

Magellan® Motion Control IC Programmer’'s Command Reference

195




SetVelocity (cont.) buffered 11h

GetVelocit 4Bh
A Y

C-Mntion API PMDresult PMDSetVelocity (PMDAxisInterface axis intf,
PMDint32 velocity)

PMDresult PMDGetVelocity (PMDAxisInterface axis intf,
PMDint32* velocity)

VB-Motion API Dim velocity as Long
MagellanAxis.Velocity = velocity
velocity = MagellanAxis.Velocity

see Set/GetAcceleration (p. 78), Set/GetDeceleration (p. 113), Set/GetjJerk (p. 138),
Set/GetPosition (p. 158), MultiUpdate (p. 63), Update (p. 197)

196 Magellan® Motion Control IC Programmer’'s Command Reference




Update 1Ah N

Syntax Update axis
Motor Types | DC Brush | BrushlessDC | Microstepping [ Pulse & Direction |
Arguments Name Instance Encoding
axis Axis1 0
Axis2 1
Axis3 2
Axis4 3
Structure | 0 [ axis [ 1Ah |
15 12 1" 8 7 0
Description Update causes all buffered data parameters to be copied into the corresponding run-time registers on

the specified axis. When the Update command is executed, the update mask is used to determine which
groups of parameters are actually updated.

The following table shows the buffered commands and variables that are activated by the Update
command.

Group Command/Parameter

Trajectory Acceleration
Deceleration
Gear Ratio
Jerk
Position
Profile Mode
Stop Mode
Velocity
Clear Position Error

Position Servo Derivative Time
Integrator Sum Limit
Kaff
Kd
Ki
Kp
Kvff
Kout
Motor Command

Current Loops Integrator Sum Limit
Ki
Kp

Atlas No additional Atlas communication need be performed for this command, because the update bit in the
Atlas torque command is used to cause an Atlas amplifier update. See Atas Digital Amplifier Complete
Technical Reference for more detail.

Restrictions

C-Motion API PMDresult PMDUpdate (PMDAxisInterface axis intf)
VB-Motion API MagellanAxis.Update ()
see MultiUpdate (p. 63), Set/GetUpdateMask (p. 193)

Magellan® Motion Control IC Programmer’'s Command Reference 197




O WriteBuffer

C8h

Syntax
Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

198

WriteBuffer bufferID value

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Type Range
bufferlD unsigned 16 bits 0 to 31
value signed 32 bits -23" to 2311
WriteBuffer
| 0 | C8h |
15 8 7 0
First data word
write | 0 | bufferlD |
15 5 4 0

Second data word
write | value (high-order part) |
31 16
Third data word
write | value (low-order part) |
15 0

WriteBuffer writes the 32-bit value into the location pointed to by the write buffer index in the
specified buffer. After the contents have been written, the write index is incremented by 1. If the
result is equal to the buffer length (set by SetBufferLength), the index is reset to zero (0).

The command is not available on all products. See the product user’s guide.

PMDresult PMDWriteBuffer (PMDAxisInterface axis intf,
PMDuintl6 bufferID,
PMDint32 data)

Dim data as Long
MagellanObject.WriteBuffer ( bufferID ) = data

ReadBuffer (p. 67), Set/GetBufferWritelndex (p. 101)

Magellan® Motion Control IC Programmer’'s Command Reference




Writel0

82h

Syntax
Motor Types

Arguments

Packet
Structure

Description

Restrictions

C-Motion API

VB-Motion API

see

WritelO address data

| DC Brush | BrushlessDC | Microstepping | Pulse & Direction
Name Type Range
address unsigned 16 bits 0 fo 255
data unsigned 16 bits 0 to 261
WritelO
| 0 | 82h |
15 8 7 0
First data word
write | 0 | address |
15 8 7 0
Second data word
write | data |
15 0

WritelO writes one 16-bit word of data to address. The address is an offset from location 1000h of the
motion control IC’s peripheral device address space.

The format and interpretation of the 16-bit data word are dependent on the user-defined device being
addressed. User-defined I/O can be used to implement a variety of features such as additional parallel
I/0, flash memory for non-volatile configuration information storage, or display devices such as LED
arrays.

This command is only available in products with general purpose parallel port interfaces. See the product

user’s guide.

PMDresult PMDWriteIO (PMDAxisInterface axis intf,
PMDuintl6 address,
PMDuintl6 data)

Dim data as Short
MagellanObject.IO( address ) = data

ReadlO (p. 69)

Magellan® Motion Control IC Programmer’'s Command Reference

199




This page intentionally left blank.

200 Magellan® Motion Control IC Programmer’'s Command Reference




5. Instruction Summary Tables 4

5.1 Descriptions by Functional Category

Breakpoints and Interrupts Page
Set/GetBreakpointUpdateMask  Set/Get mask for what is updated by breakpoint action “update.” 92
ClearInterrupt Reset interrupt. 21
Set/GetBreakpoint Set/Get breakpoint type. 89
Set/GetBreakpointValue Set/Get breakpoint comparison value. 94
GetlInterruptAxis Get the axes with pending interrupts. 49
Set/GetInterruptMask Set/Get interrupt mask. 136
Motor Phase and Commutation

Set/GetCommutationMode Set/Get the commutation phasing mode. 104
Set/GetPhaseAngle Set/Get current commutation phase angle. 151
GetPhaseCommand Get the motor output command for a given phase A, B, or C. 50
Set/GetPhaseCorrectionMode Set/Get phase correction mode. 152
Set/GetPhaseCounts Set/Get number of encoder counts per commutation cycle. 153
Set/GetPhaselnitializeMode Set/Get phase initialization method. 154
Set/GetPhaselnitializeTime Set/Get the time parameters for algorithmic phase initialization. 155
Set/GetPhaseOffset Set/Get phase offset value. 156
Set/GetPhasePrescale Set/Get commutation prescaler mode. 157
InitializePhase Perform phase initialization procedure. 62
Current Loops

CalibrateAnalog Set analog offsets to zero output. 19
Set/GetAnalogCalibration Set analog measurement offsets. 83
Set/GetCurrentControlMode Set/Get current loop mode (PhaseA/B or FOC). 107
Set/GetCurrentlLoop Set/Get a parameter for the PhaseA/B current loops. 111
GetCurrentLoopValue Get the instantaneous value of a node in the PhaseA/B current loops. 37
Set/GetFOC Set/Get a parameter for the FOC current control. 131
GetFOCValue Get the instantaneous value of a node in the FOC current control. 45
Digital Servo Filter

ClearPositionError Set position error to 0. 22
GetPositionError Get actual position error. 51
Set/GetPositionLoop Set/Get a parameter for the Digital Servo Loop. 160
GetPositionLoopValue Get the current value of a node in the Digital Servo Loop. 52
Set/GetPositionErrorLimit Set/Get the maximum position error limit. 159
Set/GetAuxiliaryEncoderSource  Controls the dual encoder loop feature. 85
Encoder

AdjustActualPosition Sums the specified offset with the actual encoder position. 18
Set/GetActualPosition Set/Get the actual encoder position. 80
Set/GetActualPositionUnits Set/Get the unit type returned for the actual encoder position. 82
GetActualVelocity Get the actual encoder velocity. 30

Magellan® Motion Control IC Programmer’'s Command Reference

201




A Instruction Summary Tables

202

Encoder
Set/GetCaptureSource Set/Get the capture source. 103
GetCaptureValue Get current axis position capture value and reset the capture. 32
Set/GetEncoderModulus Set/Get the full scale range of the parallel-word encoder. 121
Set/GetEncoderSource Set/Get the encoder type. 122
Set/GetEncoderToStepRatio Set/Get encoder count to step ratio. 124
Motor Output
GetActiveMotorCommand Read the active motor command value. 26
GetDriveValue Read drive bus voltage, bus current, or temperature. 42
Set/GetMotorCommand Set/Get direct value to motor output register, read buffered motor 141
output command.
Set/GetMotorType Set/Get motor type for axis. 144
Set/GetOutputMode Set/Get the motor output mode. 148
Set/GetPWMFrequency Set/Get the PWM output frequency 164
Set/GetDrivePWM Set/Get PWM parameters 119
Set/GetStepRange Set/Get the allowable range (in KHz) for step output generation. 176
Set/GetCurrentFoldback Set/Get the maximum continuous operating current for 1%t Current 109
Foldback
Set/GetCurrent Set/Get parameters for holding current. 105
Set/GetMotorLimit Set/Get motor output limit. 143
Set/GetMotorBias Set/Get the motor bias (applied outside of position loop). 140
Operating Mode, Event, and Update Control
Set/GetOperatingMode Set/Get static Operating Mode of the axis. 146
RestoreOperatingMode Restore the Current Operating Mode to the static Operating Mode. 77
GetActiveOperatingMode Get the Active Operating Mode of the axis. 27
MultiUpdate Forces buffered command values to become active for multiple axes. 63
Update Forces buffered command values to become active. 197
Set/GetUpdateMask Set/Get mask for what loops are updated by update command. 193
Set/GetEventAction Set/Get the response of the axis to an event. 125
Postion Servo Loop Control
Set/GetMotionCompleteMode Set/Get the motion complete mode. 139
Set/GetSampleTime Set/Get servo loop sample time. 166
Set/GetSettleTime Set/Get the axis-settled time. 170
Set/GetSettleWindow Set/Get the settle-window boundary value. 171
GetTime Get current chipset time (number of servo loops). 56
Set/GetTrackingWindow Set/Get the tracking window boundary value. 192
Profile Generation
Set/GetAcceleration Set/Get acceleration limit. 78
GetCommandedAcceleration Get commanded (instantaneous desired) acceleration. 34
GetCommandedPosition Get commanded (instantaneous desired) position. 35
GetCommandedVelocity Get commanded (instantaneous desired) velocity. 36
Set/GetDeceleration Set/Get deceleration limit. 113
Set/GetGearMaster Set/Get the electronic gear mode master axis and source. 133
Set/GetGearRatio Set/Get commanded electronic gear ratio. 135
Set/Getjerk Set/Get jerk limit. 138
Set/GetPosition Set/Get destination position. 158

Magellan® Motion Control IC Programmer’'s Command Reference




Instruction Summary Tables A

Profile Generation

Set/GetProfileMode Set/Get current profile mode. 163
Set/GetStartVelocity Set/Get start velocity. 175
Set/GetStopMode Set/Get stop command: abrupt, smooth, or none. 177
Set/GetVelocity Set/Get velocity limit. 195
RAM Buffer

Set/GetBufferLength Set/Get the length of a memory buffer. 96
Set/GetBufferReadIndex Set/Get the buffer read pointer for a particular buffer. 98
Set/GetBufferStart Set/Get the start location of a memory buffer. 99
Set/GetBufferWritelndex Set/Get the buffer write pointer for a particular buffer. 101
ReadBuffer Read a long word value from a buffer memory location. 67
WriteBuffer Write a long word value to a buffer memory location. 198
Drive

Set/GetDriveFaultParameter  Set/Get threshold for Overvoltage, Undervoltage, or Overcurrent fault. 31
GetBusVoltage Get the current bus voltage reading. 31
Set/GetOvertemperatureLimit Set/Get threshold for Overtemperature fault. 149
GetTemperature Gets current temperature reading. 55
Set/GetFaultOutMask Set/Get mask for FaultOut from Event Status register. 127
GetDriveFaultStatus Gets the Drive Fault Status register. 39
ClearDriveFaultStatus Clears the Drive Fault Status register. 20
Status Registers and AxisOut Indicator

GetActivityStatus Get Activity Status register. 28
GetDriveStatus Gets the Drive Status register. 41
Set/GetAxisOutMask Set/Get AxisOut source. 87
GetEventStatus Get Event Status word. 43
GetSignalStatus Get the current axis Signal Status register. 53
Set/GetSignalSense Set/Get the interpretation of the Signal Status bits. 172
ResetEventStatus Reset bits in Event Status word. 75
Traces

GetTraceCount Get the number of traced data points. 57
Set/GetTraceMode Set/Get the trace mode (rolling or one-time). 179
Set/GetTracePeriod Set/Get the trace period. 181
Set/GetTraceStart Set/Get the trace start condition. 182
GetTraceStatus Get the trace status word. 58
Set/GetTraceStop Set/Get the trace stop condition. 185
Set/GetTraceVariable Set/Get a trace variable setting. 188
Communications

Set/GetCANMode Set/Get the CAN 2.0B configuration mode. 102
GetlnstructionError Get the most recent I/O error code. 47
Set/GetSerialPortMode Set/Get the serial-port configuration mode. 168
Set/GetSPIMode Set/Get the SPI output mode. 174
Miscellaneous

GetChecksum Reads the internal chip checksum. 33
Set/GetSynchronizationMode  Set/Get the synchronization mode. 178
GetVersion Get chipset software version information. 60
NoOperation Perform no operation, used to verify communications. 65

Magellan® Motion Control IC Programmer’'s Command Reference

203




A Instruction Summary Tables

204

Mliscellaneous

ReadlO Read user-defined I/O value. 69
Reset Reset chipset. 70
NVRAM Program non-volatile memory 23
WritelO Write user-defined I/O value. 199
ReadAnalog Read a raw analog input. 66
Set/GetDefault Set/Get a reset default setting from non-volatile memory. 114

5.2 Command Support by Product

The following table summarizes the support of each Magellan command by the different product families. The
“MC58000/Atlas” column is for commands affecting a Atlas digital amplifier attached to an MC58000 Motion Con-
trol IC. In that column “pass through” means that a command is sent directly to Atlas, even if directed to Magellan;

“separate” means that a command may be directed either to Atlas or Magellan, and “combined” means that a com-

mand directed to Magellan may result in a command being sent to Atlas as well.

Command

MC58000/
MC55000 MC58000 Atlas

ION

MC58113

Breakpoints and Interrupts

Set/GetBreakpointUpdateMask

Clearinterrupt

Set/GetBreakpoint

Set/GetBreakpointValue

GetlInterruptAxis

Set/GetlInterruptMask

<|=<|=<|=<|=|=
<|=<|=<|=<|=|=

<|=<|=<|=<|=|=

<|=<|=<|=<|=|=

Motor Phase and Commutation

Set/GetCommutationMode

Y

Set/GetPhaseAngle

GetPhaseCommand

pass through

Set/GetPhaseCorrectionMode

Set/GetPhaseCounts

stepper only

Set/GetPhaselnitializeMode

Set/GetPhaselnitializeTime

Set/GetPhaseOffset

Set/GetPhasePrescale

InitializePhase

<|=<|=<|=<|=<|=<|=<|=<|=<]|=<

<|=<|=<|=<|=<|=<|=<|=<|=<]|=<

<|=<|=<|=<|=<|=<|=<|=<|=<]|=<

Current Loops

Set/GetAnalogCalibration

CalibrateAnalog

Set/GetCurrentControlMode

pass through

Set/GetCurrentlLoop

pass through

GetCurrentLoopValue

pass through

Set/GetFOC

pass through

GetFOCValue

pass through

<|=<|=<|=<|=

<|=<|=<|=<|=<|=<|=

Magellan® Motion Control IC Programmer’'s Command Reference




Instruction Summary Tables A

MC58000/
Command MC55000 MC58000 Atlas ION MC58113
Digital Servo Filter
ClearPositionError Y Y Y Y
GetPositionError Y Y Y Y
Set/GetPositionLoop Y Y Y
GetPositionLoopValue Y Y Y
Set/GetPositionErrorLimit Y Y Y Y
Set/GetAuxiliaryEncoderSource Y Y Y
Encoder
AdjustActualPosition Y Y Y Y
Set/GetActualPosition Y Y Y Y
Set/GetActualPositionUnits Y Y Y Y
GetActualVelocity Y Y Y Y
Set/GetCaptureSource Y Y Y Y
GetCaptureValue Y Y Y Y
Set/GetEncoderModulus Y Y Y
Set/GetEncoderSource Y Y Y Y
Set/GetEncoderToStepRatio Y Y Y Y
Motor Output
GetActiveMotorCommand Y Y Y Y
Set/GetMotorCommand Y Y Y
Set/GetMotorType readonly Y read Y

only
Set/GetOutputMode readonly Y read Y
only

Set/GetPWMFrequency pass through Y Y
Set/GetDrivePWM pass through Y
Set/GetStepRange Y Y Y
Set/GetCurrentFoldback Y pass through Y Y
Set/GetCurrent combined Y
Set/GetMotorLimit Y Y Y
Set/GetMotorBias Y Y Y
Operating Mode, Event, and Update Control
Set/GetOperatingMode Y Y combined Y Y
RestoreOperatingMode Y Y combined Y Y
GetActiveOperatingMode Y Y Y Y
MultiUpdate Y Y Y
Update Y Y Y Y
Set/GetUpdateMask Y Y Y Y
Set/GetEventAction Y Y combined Y Y

(foldback)
Position Servo Loop Control
Set/GetMotionCompleteMode Y Y Y Y
Set/GetSampleTime Y Y Y Y
Set/GetSettleTime Y Y Y Y

Magellan® Motion Control IC Programmer’'s Command Reference 205




A Instruction Summary Tables

MC58000/
Command MC55000 MIC58000 Atlas ION MC58113
Set/GetSettleWindow Y Y Y Y
Set/GetTrackingWindow Y Y Y Y
GetTime Y Y separate Y Y
Profile Generation
Set/GetAcceleration Y Y Y Y
GetCommandedAcceleration Y Y Y Y
GetCommandedPosition Y Y Y Y
GetCommandedVelocity Y Y Y Y
Set/GetDeceleration Y Y Y Y
Set/GetGearMaster Y Y Y Y
Set/GetGearRatio Y Y Y Y
Profile Generation
Set/GetJerk Y Y Y Y
Set/GetPosition Y Y Y Y
Set/GetProfileMode Y Y Y Y
Set/GetStartVelocity Y Y Y Y
Set/GetStopMode Y Y Y Y
Set/GetVelocity Y Y Y Y
RAM Buffer
Set/GetBufferLength Y Y separate Y Y
Set/GetBufferReadIindex Y Y separate Y Y
Set/GetBufferStart Y Y separate Y Y
Set/GetBufferWritelndex Y Y separate Y Y
ReadBuffer Y Y Y Y
WriteBuffer Y Y Y Y
ReadBufferl6 Atlas only Y
Drive
Set/GetDriveFaultParameter pass through Y
GetBusVoltage pass through Y
GetDriveValue Y
Set/GetOvertemperatureLimit Y
GetTemperature pass through Y
Set/GetFaultOutMask pass through Y Y
GetDriveFaultStatus pass through Y Y
ClearDriveFaultStatus pass through Y Y
Status Registers and AxisOut Indicator
GetActivityStatus Y Y Y
GetDriveStatus Y Y Y
Set/GetAxisOutMask Y Y Y
GetEventStatus Y Y Y
GetSignalStatus Y Y separate Y
Set/GetSignalSense Y Y Y
ResetEventStatus Y Y combined Y

206 Magellan® Motion Control IC Programmer’'s Command Reference




Instruction Summary Tables A

MC58000/

Command MC55000 MC58000 Atlas ION MC58113
Traces
GetTraceCount Y Y separate Y
Set/GetTraceMode Y Y separate Y
Set/GetTracePeriod Y Y separate Y
Set/GetTraceStart Y Y separate Y
GetTraceStatus Y Y separate Y
Set/GetTraceStop Y Y separate Y
Set/GetTraceVariable Y Y separate Y
Communications
Set/GetCANMode Y Y Y
GetlnstructionError Y Y separate Y
Set/GetSerialPortMode Y Y Y
Set/GetSPIMode Y
Miscellaneous
GetChecksum Y Y separate Y Y
Set/GetSynchronizationMode Y Y
GetVersion Y Y separate Y Y
NoOperation Y Y separate Y Y
ReadlO Y Y
Reset Y Y separate Y
WritelO Y Y Y
ReadAnalog Y Y separate Y Y
Set/GetDefault Y
NVRAM Y Y
5.3 Alphabetical Listing

Get/Set instructions paits are shown together on the same line of the table. i
Instruction Code Instruction Code Page
AdjustActualPosition F5h 18
CalibrateAnalog 6Fh 19
ClearDriveFaultStatus 6Ch 20
Clearlinterrupt ACh 21
ClearPositionError 47h 22
NVRAM 30h 23
GetAcceleration 4Ch SetAcceleration 90h 78
GetActiveMotorCommand 3Ah 26
GetActiveOperatingMode 57h 27
GetActivityStatus A6h 28
GetActualPosition 37h SetActualPosition 4Dh 80
GetActualPositionUnits BFh SetActualPositionUnits BEh 82
GetActualVelocity ADh 30
GetAnalogCalibration 2Ah SetAnalogCalibration 2%h 83

Magellan® Motion Control IC Programmer’'s Command Reference 207




A Instruction Summary Tables

208

Instruction Code Instruction Code Page
GetAuxiliaryEncoderSource 0% SetAuxiliaryEncoderSource 08h 85
GetAxisOutMask 46h SetAxisOutMask 45h 87
GetBreakpoint D5h SetBreakpoint D4h 89
GetBreakpointUpdateMask 33h SetBreakpointUpdateMask 32h 92
GetBreakpointValue D7h SetBreakpointValue Déh 94
GetBufferLength C3h SetBufferLength C2h 96
GetBufferReadIndex C7h SetBufferReadIindex Céh 98
GetBufferStart Clh SetBufferStart COh 99
GetBufferWritelndex C5h SetBufferWritelndex C4h 101
GetBusVoltage 40h 31
GetCANMode I5h SetCANMode 12h 102
GetCaptureSource D%h SetCaptureSource D8h 103
GetCaptureValue 36h 32
GetChecksum F8h 33
GetCommandedAcceleration A7h 34
GetCommandedPosition IDh 35
GetCommandedVelocity IEh 36
GetCommutationMode E3h SetCommutationMode E2h 104
GetCurrent 5Fh SetCurrent 5Eh 105
GetCurrentControlMode 44h SetCurrentControlMode 43h 107
GetCurrentFoldback 42h SetCurrentFoldback 4lh 109
GetCurrentLoop 74h SetCurrentlLoop 73h 1M1
GetCurrentLoopValue 71h 37
GetDeceleration 92h SetDeceleration 91h 113
GetDefault 8Ah SetDefault 8% 114
GetDriveCommandMode 7Fh SetDriveCommandMode 7Eh 116
GetDriveFaultParameter 60h SetDriveFaultParameter 62h 117
GetDriveFaultStatus 6Dh 39
GetDrivePWM 24h SetDrivePWM 23h 119
GetDriveStatus OEh 41
GetDriveValue 70h 42
GetEncoderModulus 8Eh SetEncoderModulus 8Dh 121
GetEncoderSource DBh SetEncoderSource DAh 122
GetEncoderToStepRatio DFh SetEncoderToStepRatio DEh 124
GetEventAction 4%9h SetEventAction 48h 125
GetEventStatus 3lh 43
GetFaultOutMask FCh SetFaultOutMask FBh 127
GetFeedbackParameter 22h SetFeedbackParameter 21h 129
GetFOC F7h SetFOC Féh 131
GetFOCValue 5Ah 45
GetGearMaster AFh SetGearMaster AEh 133
GetGearRatio 59h SetGearRatio 14h 135
GetlnstructionError AS5h 47
GetlnterruptAxis Elh 49
GetlInterruptMask 56h SetInterruptMask 2Fh 136
Getjerk 58h Setjerk 13h 138
GetMotionCompleteMode ECh SetMotionCompleteMode  EBh 139
GetMotorBias 2Dh SetMotorBias OFh 140
GetMotorCommand 69h SetMotorCommand 77h 141
GetMotorLimit 07h SetMotorLimit 06h 143
GetMotorType 03h SetMotorType 02h 144

Magellan® Motion Control IC Programmer’'s Command Reference




Instruction Summary Tables A

Instruction Code Instruction Code Page
GetOperatingMode 66h SetOperatingMode 65h 146
GetOutputMode 6Eh SetOutputMode EOh 148
GetOvertemperatureLimit ICh SetOvertemperatureLimit  |Bh 149
GetPhaseAngle 2Ch SetPhaseAngle 84h 151
GetPhaseCommand EAh 50
GetPhaseCorrectionMode ESh SetPhaseCorrectionMode E8h 152
GetPhaseCounts 7Dh SetPhaseCounts 75h 153
GetPhaselnitializeMode E5h SetPhaselnitializeMode E4h 154
GetPhaselnitializeTime 7Ch SetPhaselnitializeTime 72h 155
GetPhaseOffset 7Bh SetPhaseOffset 76h 156
GetPhasePrescale E7h SetPhasePrescale E6h 157
GetPosition 4Ah SetPosition 10h 158
GetPositionError 9%h 51
GetPositionErrorLimit 98h SetPositionErrorLimit 97h 159
GetPositionLoop 68h SetPositionLoop 67h 160
GetPositionLoopValue 55h 52
GetProfileMode Alh SetProfileMode AOh 163
GetPWMFrequency 0Dh SetPWMFrequency 0Ch 164
GetSampleTime 3Ch SetSampleTime 3Bh 166
GetSerialPortMode 8Ch SetSerialPortMode 8Bh 168
GetSettleTime ABh SetSettleTime AAh 170
GetSettleWindow BDh SetSettleWindow BCh 171
GetSignalSense A3h SetSignalSense A2h 172
GetSignalStatus A4h 53
GetSPIMode 0Bh SetSPIMode 0Ah 174
GetStartVelocity 6Bh SetStartVelocity 6Ah 175
GetStepRange CEh SetStepRange CFh 176
GetStopMode Dlh SetStopMode DoOh 177
GetSynchronizationMode F3h SetSynchronizationMode F2h 178
GetTemperature 53h 55
GetTime 3Eh 56
GetTraceCount BBh 57
GetTraceMode Blh SetTraceMode BOh 179
GetTracePeriod B%h SetTracePeriod B8h 181
GetTraceStart B3h SetTraceStart B2h 182
GetTraceStatus BAh 58
GetTraceStop B5h SetTraceStop B4h 185
GetTraceValue 28h 59
GetTraceVariable B7h SetTraceVariable Béh 188
GetTrackingWindow A%h SetTrackingWindow A8h 192
GetUpdateMask FAh SetUpdateMask F9h 193
GetVelocity 4Bh SetVelocity ITh 195
GetVersion 8Fh 60
InitializePhase 7Ah 62
MultiUpdate 5Bh 63
NoOperation 00h 65
ReadAnalog EFh 66
ReadBuffer C% 67
ReadlO 83h 69
Reset 3%h 70
ResetEventStatus 34h 75

Magellan® Motion Control IC Programmer’'s Command Reference

209




A Instruction Summary Tables

Instruction Code Instruction Code Page
RestoreOperatingMode 2Eh 77
Update IAh 197
WriteBuffer C8h 198
WritelO 82h 199

210 Magellan® Motion Control IC Programmer’'s Command Reference




Instruction Summary Tables A

5.4 Numerical Listing

Code Instruction Page Code Instruction Page
00h NoOperation 65 41h SetCurrentFoldback 109
02h SetMotorType 144 42h GetCurrentFoldback 109
03h GetMotorType 144 43h SetCurrentControlMode 107
06h SetMotorLimit 143 44h GetCurrentControlMode 107
07h GetMotorLimit 143 45h SetAxisOutMask 87
08h SetAuxiliaryEncoderSource 85 46h GetAxisOutMask 87
0% GetAuxiliaryEncoderSource 85 47h ClearPositionError 22
0Ah SetSPIMode 174 48h SetEventAction 125
0Bh GetSPIMode 174 4%h GetEventAction 125
0Ch SetPWMFrequency 164 4Ah GetPosition 158
0Dh GetPWMFrequency 164 4Bh GetVelocity 195
OEh GetDriveStatus 41 4Ch GetAcceleration 78
OFh SetMotorBias 140 4Dh SetActualPosition 80
[0h SetPosition 158 53h GetTemperature 55
Ilh SetVelocity 195 55h GetPositionLoopValue 52
12h SetCANMode 102 56h GetlInterruptMask 136
[3h Setjerk 138 57h GetActiveOperatingMode 27
14h SetGearRatio 135 58h Getjerk 138
I5h GetCANMode 102 59h GetGearRatio 135
|Ah Update 197 5Ah GetFOCValue 45
IBh SetOvertemperatureLimit 149 5Bh MultiUpdate 63
ICh GetOvertemperatureLimit 149 5Eh SetCurrent 105
IDh GetCommandedPosition 35 5Fh GetCurrent 105
IEh GetCommandedVelocity 36 60h GetDriveFaultParameter 117
21h SetFeedbackParameter 129 62h SetDriveFaultParameter 117
22h GetFeedbackParameter 129 65h SetOperatingMode 146
23h SetDrivePWM 119 66h GetOperatingMode 146
24h GetDrivePWM 119 67h SetPositionLoop 160
28h GetTraceValue 59 68h GetPositionLoop 160
2%h SetAnalogCalibration 83 6%h GetMotorCommand 141
2Ah GetAnalogCalibration 83 6Ah SetStartVelocity 175
2Ch GetPhaseAngle 151 6Bh GetStartVelocity 175
2Dh GetMotorBias 140 6Ch ClearDriveFaultStatus 20
2Eh RestoreOperatingMode 77 6Dh GetDriveFaultStatus 39
2Fh SetinterruptMask 136 6Eh GetOutputMode 148
30h NVRAM 23 6Fh CalibrateAnalog 19
3lh GetEventStatus 43 70h GetDriveValue 42
32h SetBreakpointUpdateMask 92 71h GetCurrentLoopValue 37
33h GetBreakpointUpdateMask 92 72h SetPhaselnitializeTime 155
34h ResetEventStatus 75 73h SetCurrentLoop 111
36h GetCaptureValue 32 74h GetCurrentLoop 111
37h GetActualPosition 80 75h SetPhaseCounts 153
3%h Reset 70 76h SetPhaseOffset 156
3Ah GetActiveMotorCommand 26 77h SetMotorCommand 141
3Bh SetSampleTime 166 7Ah InitializePhase 62
3Ch GetSampleTime 166 7Bh GetPhaseOffset 156
3Eh GetTime 56 7Ch GetPhaselnitializeTime 155
40h GetBusVoltage 31 7Dh GetPhaseCounts 153

Magellan® Motion Control IC Programmer’'s Command Reference 211




A Instruction Summary Tables

Code Instruction Page Code Instruction Page
7Eh SetDriveCommandMode 116 Clh GetBufferStart 99
7Fh GetDriveCommandMode 116 C2h SetBufferLength 96
82h WritelO 199 C3h GetBufferLength 96
83h ReadlO 69 C4h SetBufferWritelndex 101
84h SetPhaseAngle 151 C5h GetBufferWritelndex 101
8%h SetDefault 114 Céh SetBufferReadIndex 98
8Ah GetDefault 114 C7h GetBufferReadlndex 98
8Bh SetSerialPortMode 168 C8h WriteBuffer 198
8Ch GetSerialPortMode 168 C%h ReadBuffer 67
8Dh SetEncoderModulus 121 CEh GetStepRange 176
8Eh GetEncoderModulus 121 CFh SetStepRange 176
8Fh GetVersion 60 DOh SetStopMode 177
90h SetAcceleration 78 Dlh GetStopMode 177
9lh SetDeceleration 113 D4h SetBreakpoint 89
92h GetDeceleration 113 D5h GetBreakpoint 89
97h SetPositionErrorLimit 159 Déh SetBreakpointValue 94
98h GetPositionErrorLimit 159 D7h GetBreakpointValue 94
9%h GetPositionError 51 D8h SetCaptureSource 103
AOh SetProfileMode 163 Do%h GetCaptureSource 103
Alh GetProfileMode 163 DAh SetEncoderSource 122
A2h SetSignalSense 172 DBh GetEncoderSource 122
A3h GetSignalSense 172 DEh SetEncoderToStepRatio 124
A4h GetSignalStatus 53 DFh GetEncoderToStepRatio 124
ASh GetlnstructionError 47 EOh SetOutputMode 148
Aé6h GetActivityStatus 28 Elh GetlnterruptAxis 49
A7h GetCommandedAcceleration 34 E2h SetCommutationMode 104
A8h SetTrackingWindow 192 E3h GetCommutationMode 104
A%h GetTrackingWindow 192 E4h SetPhaselnitializeMode 154
AAh SetSettleTime 170 E5h GetPhaselnitializeMode 154
ABh GetSettleTime 170 E6h SetPhasePrescale 157
ACh Clearlinterrupt 21 E7h GetPhasePrescale 157
ADh GetActualVelocity 30 E8h SetPhaseCorrectionMode 152
AEh SetGearMaster 133 E9h GetPhaseCorrectionMode 152
AFh GetGearMaster 133 EAh GetPhaseCommand 50
BOh SetTraceMode 179 EBh SetMotionCompleteMode 139
Blh GetTraceMode 179 ECh GetMotionCompleteMode 139
B2h SetTraceStart 182 EFh ReadAnalog 66
B3h GetTraceStart 182 F2h SetSynchronizationMode 178
B4h SetTraceStop 185 F3h GetSynchronizationMode 178
B5h GetTraceStop 185 F5h AdjustActualPosition 18
Béh SetTraceVariable 188 Féh SetFOC 131
B7h GetTraceVariable 188 F7h GetFOC 131
B8h SetTracePeriod 181 F8h GetChecksum 33
B%h GetTracePeriod 181 Foh SetUpdateMask 193
BAh GetTraceStatus 58 FAh GetUpdateMask 193
BBh GetTraceCount 57 FBh SetFaultOutMask 127
BCh SetSettleWindow 171 FCh GetFaultOutMask 127
BDh GetSettleWindow 171

BEh SetActualPositionUnits 82

BFh GetActualPositionUnits 82

CoOh SetBufferStart 99

212 Magellan® Motion Control IC Programmer’'s Command Reference




Instruction Summary Tables A

5.5 Magellan Compatibility

Below ate commands from Magellan v1.x that have been replaced/superseded by new commands in Magellan v2.x.

Old Command Old Code New Command
Set/GetBiquadCoefficient 04h/05h Set/GetPositionLoop

GetDerivative 9Bh GetPositionLoopValue
Set/GetDerivativeTime 9Ch/9Dh Set/GetPositionLoop

GetHostlOError AS5h GetlnstructionError (name change only)
Getlintegral 9Ah GetPositionLoopValue
Set/GetlIntegrationLimit 95h/96h Set/GetPositionLoop

Set/GetKaff 93h/94h Set/GetPositionLoop

Set/GetKd 27h/52h Set/GetPositionLoop

Set/GetKi 26h/51h Set/GetPositionLoop

Set/GetKout 9Eh/9Fh Set/GetPositionLoop

Set/GetKp 25h/50h Set/GetPositionLoop

Set/GetKvff 2Bh/54h Set/GetPositionLoop
Set/GetAutoStopMode D2h/D3h Set/GetEventAction

Set/GetMotorMode DCh/DDh Set/GetOperatingMode, RestoreOperatingMode
Set/GetAxisOutSource EDh/EEh Set/GetAxisOutMask

Set/GetAxisMode 87h/88h Set/GetOperatingMode
Set/GetLimitSwitchMode 80h/8lh Set/GetEventAction

Magellan® Motion Control IC Programmer’'s Command Reference 213




A Instruction Summary Tables

This page intentionally left blank.

214 Magellan® Motion Control IC Programmer’'s Command Reference




For additional information, or for technical assistance,
please contact PMD at (978) 266-1210.

You may also e-mail your request to support@pmdcorp.com

Visit our website at http://www.pmdcorp.com

P MD

Performance Motion Devices
80 Central Street
Boxborough, MA 01719

Magellan® Motion Control IC Programmer’'s Command Reference 215




	NOTICE
	Warranty
	Disclaimer
	Table of Contents
	1. The Magellan Family
	1.1 Family Summary
	1.2 Magellan Motion Control IC Products

	2. C-Motion
	2.1 Introduction
	2.2 C-Motion Versions
	2.3 Files
	2.4 Using C-Motion
	2.5 Prodigy Motion Card Specific Functions

	3. VB-Motion
	3.1 Introduction
	3.2 Visual Basic Classes

	4. Instruction Reference
	4.1 How to Use This Reference
	AdjustActualPosition F5h
	CalibrateAnalog 6Fh
	ClearDriveFaultStatus 6Ch
	ClearInterrupt ACh
	ClearPositionError buffered 47h
	NVRAM
	GetActiveMotorCommand 3Ah
	GetActiveOperatingMode 57h
	GetActivityStatus A6h
	GetActualVelocity ADh
	GetBusVoltage 40h
	GetCaptureValue 36h
	GetChecksum F8h
	GetCommandedAcceleration A7h
	GetCommandedPosition 1Dh
	GetCommandedVelocity 1Eh
	GetCurrentLoopValue 71h
	GetDriveFaultStatus 6Dh
	GetDriveStatus 0Eh
	GetDriveValue 70h
	GetEventStatus 31h
	GetFOCValue 5Ah
	GetInstructionError A5h
	GetInterruptAxis E1h
	GetPhaseCommand EAh
	GetPositionError 99h
	GetPositionLoopValue 55h
	GetSignalStatus A4h
	GetTemperature 53h
	GetTime 3Eh
	GetTraceCount BBh
	GetTraceStatus BAh
	GetTraceValue 28h
	GetVersion 8Fh
	InitializePhase 7Ah
	MultiUpdate 5Bh
	NoOperation 00h
	ReadAnalog EFh
	ReadBuffer C9h
	ReadBuffer16 CDh
	ReadIO 83h
	Reset 39h
	ResetEventStatus 34h
	RestoreOperatingMode 2Eh
	SetAcceleration buffered 90h GetAcceleration 4Ch
	SetActualPosition 4Dh GetActualPosition 37h
	SetActualPositionUnits BEh GetActualPositionUnits BFh
	SetAnalogCalibration 29h GetAnalogCalibration 2Ah
	SetAnalogCalibration (cont.) 29h GetAnalogCalibration 2Ah
	SetAuxiliaryEncoderSource 08h GetAuxiliaryEncoderSource 09h
	SetAxisOutMask 45h GetAxisOutMask 46h
	SetBreakpoint D4h GetBreakpoint D5h
	SetBreakpointUpdateMask 32h GetBreakpointUpdateMask 33h
	SetBreakpointValue D6h GetBreakpointValue D7h
	SetBufferLength C2h GetBufferLength C3h
	SetBufferReadIndex C6h GetBufferReadIndex C7h
	SetBufferStart C0h GetBufferStart C1h
	SetBufferWriteIndex C4h GetBufferWriteIndex C5h
	SetCANMode 12h GetCANMode 15h
	SetCaptureSource D8h GetCaptureSource D9h
	SetCommutationMode E2h GetCommutationMode E3h
	SetCurrent 5Eh GetCurrent 5Fh
	SetCurrent (cont.) 5Eh GetCurrent 5Fh
	SetCurrentControlMode buffered 43h GetCurrentControlMode 44h
	SetCurrentFoldback 41h GetCurrentFoldback 42h
	SetCurrentLoop buffered 73h GetCurrentLoop 74h
	SetDeceleration buffered 91h GetDeceleration 92h
	SetDefault 89h GetDefault 8Ah
	SetDriveCommandMode 7Eh GetDriveCommandMode 7Fh
	SetDriveFaultParameter 62h GetDriveFaultParameter 60h
	SetDrivePWM 23h GetDrivePWM 24h
	SetDrivePWM (cont.) 23h GetDrivePWM 24h
	SetEncoderModulus 8Dh GetEncoderModulus 8Eh
	SetEncoderSource DAh GetEncoderSource DBh
	SetEncoderToStepRatio DEh GetEncoderToStepRatio DFh
	SetEventAction 48h GetEventAction 49h
	SetFaultOutMask FBh GetFaultOutMask FCh
	SetFeedbackParameter 21h GetFeedbackParameter 22h
	SetFOC buffered F6h GetFOC F7h
	SetGearMaster AEh GetGearMaster AFh
	SetGearRatio buffered 14h GetGearRatio 59h
	SetInterruptMask 2Fh GetInterruptMask 56h
	SetInterruptMask (cont.) 2Fh GetInterruptMask 56h
	SetJerk buffered 13h GetJerk 58h
	SetMotionCompleteMode EBh GetMotionCompleteMode ECh
	SetMotorBias 0Fh GetMotorBias 2Dh
	SetMotorCommand buffered 77h GetMotorCommand 69h
	SetMotorLimit 06h GetMotorLimit 07h
	SetMotorType 02h GetMotorType 03h
	SetOperatingMode 65h GetOperatingMode 66h
	SetOutputMode E0h GetOutputMode 6Eh
	SetOvertemperatureLimit 1Bh GetOvertemperatureLimit 1Ch
	SetOvertemperatureLimit (cont.) 1Bh GetOvertemperatureLimit 1Ch
	SetPhaseAngle 84h GetPhaseAngle 2Ch
	SetPhaseCorrectionMode E8h GetPhaseCorrectionMode E9h
	SetPhaseCounts 75h GetPhaseCounts 7Dh
	SetPhaseInitializeMode E4h GetPhaseInitializeMode E5h
	SetPhaseInitializeTime 72h GetPhaseInitializeTime 7Ch
	SetPhaseOffset 76h GetPhaseOffset 7Bh
	SetPhasePrescale E6h GetPhasePrescale E7h
	SetPosition buffered 10h GetPosition 4Ah
	SetPositionErrorLimit 97h GetPositionErrorLimit 98h
	SetPositionLoop buffered 67h GetPositionLoop 68h
	SetProfileMode buffered A0h GetProfileMode A1h
	SetPWMFrequency 0Ch GetPWMFrequency 0Dh
	SetSampleTime 3Bh GetSampleTime 3Ch
	SetSerialPortMode 8Bh GetSerialPortMode 8Ch
	SetSettleTime AAh GetSettleTime ABh
	SetSettleWindow BCh GetSettleWindow BDh
	SetSignalSense A2h GetSignalSense A3h
	SetSPIMode 0Ah GetSPIMode 0Bh
	SetStartVelocity 6Ah GetStartVelocity 6Bh
	SetStepRange CFh GetStepRange CEh
	SetStopMode buffered D0h GetStopMode D1h
	SetSynchronizationMode F2h GetSynchronizationMode F3h
	SetTraceMode B0h GetTraceMode B1h
	SetTracePeriod B8h GetTracePeriod B9h
	SetTraceStart B2h GetTraceStart B3h
	SetTraceStart (cont.) B2h GetTraceStart B3h
	SetTraceStop B4h GetTraceStop B5h
	SetTraceVariable B6h GetTraceVariable B7h
	SetTrackingWindow A8h GetTrackingWindow A9h
	SetUpdateMask F9h GetUpdateMask FAh
	SetVelocity buffered 11h GetVelocity 4Bh
	Update 1Ah
	WriteBuffer C8h
	WriteIO 82h

	5. Instruction Summary Tables
	5.1 Descriptions by Functional Category
	5.2 Command Support by Product
	5.3 Alphabetical Listing
	5.4 Numerical Listing
	5.5 Magellan Compatibility


