G

Control
Technology
Corporation

CONTROL TECHNOLOGY CORPORATION

5300 ‘C’ User Programming Guide

5300

‘C’ User Programming
Guide

5300 ‘C’ User Programming Guide

Blank

Control Technology Corporation
Document 951-530004-0001 02/07

ﬂ WARNING: Use of CTC Controllers and software is to be done only by
experienced and qualified personnel who are responsible for the application and use
of control equipment like the CTC controllers. These individuals must satisfy
themselves that all necessary steps have been taken to assure that each application
and use meets all performance and safety requirements, including any applicable
laws, regulations, codes and/or standards. The information in this document is given
as a general guide and all examples are for illustrative purposes only and are not
intended for use in the actual application of CTC product. CTC products are not
designed, sold, or marketed for use in any particular application or installation; this
responsibility resides solely with the user. CTC does not assume any responsibility or
liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software
described in this document is provided under license agreement and may be used and
copied only in accordance with the terms of the license agreement. The information,
drawings, and illustrations contained herein are the property of Control Technology
Corporation. No part of this manual may be reproduced or distributed by any means,
electronic or mechanical, for any purpose other than the purchaser’s personal use, without
the express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware
revision levels. Some features may not be supported in earlier revisions. See www.ctc-
control.com for the availability of firmware updates or contact CTC Technical Support.

Model Number Hardware Revision | Firmware Revision
5300 All Revisions >=5.00.89

TABLE OF CONTENTS

INETOAUCTION ...ttt ettt e et e et e et e e essaeeessaeeessaeesnsneeensaeesnseeennseeenns 5
COMPILET ittt ettt e et e st e st e e st e e sabeeesabeeenane 6
DiStIIDULEA 'C' IS ueeeniiieiiiieceeeee ettt e e e e e e e ebeeeennes 6
FEATUTES ..ottt ettt e e et e e e abre e e s eaaneeeeaaes 7

RESOUICE FAILETS .ooieiieiiieeciieecee ettt et e e et e e e e e enbaeennnee s 7
TTASKS ettt ettt sttt e st e sb e e st e e s 7
COMIMUNICATIONSvvveeeiiieeeiieesieeesiteesteeesteeesteeessseeessseeessseesssseeessseessssesssseeessseesssees 7
Motion Control (TBD)......uuiiiiiiiiiiiiee e e e eeaes 7
Program CONIOL.........ooouiiiiiiiie ettt e e e st e e e iaaee s 7
EXPANSION. ...ttt ettt et e st e st e st e st e st e e s 7

070 E OO PSSP PPPRP 9
Cygwin v1.5.9 Installation (COMPIIET)cccueeeriiiiiiiiiiieiiceeeeeee e 9
GNU X-Tools V3.0b for Windows Installation............ccccceeerieeeriieenieennieeeieeeiee e 14

Verify Compiler Installationcooouiiiiiiiiiiiiiiieiieeececeeee e 16
Final System Configurationcceeeciiieriiieeiiiieeiiee et eeeee et e eieeeeaeeeeaeeesaeeeeseeees 18

Loadable ‘C’ User Functions and FIltersccooouieiiiiiiiiieniiiiiiiieeieeeeeeeeeeeeen 19
5300 System Memory Map........coocueiiiiiiiiieiieete ettt 19
Resource Filter EXample........ooouuiiiiiiiiiiiiiiiicceeeeee e 20
Virtual Table, User and QUICKSIEP......ccuvieruiieriieeiiieeriee et et e e eveeesaeeeevee e 22
VTABLE_QS Function Prototypes and Definitions............cccccueeviiiiniieiniieeniieeneenns 26

REZISTET ACCESS .uvieiuiiieeiiieeiieeeieeeeieeeeiteerteeesitee e beeeaaeeeabeessaeeensaeeensaeesnseeesnseeennses 27
COMIMUNICATIONSuvveeiiieeeiiee ettt et e et e et e et e e et eeeabeesbbeesbteesbeeesabaeesabeeesaseeenanes 28
DIAZNOSTICS .ttt euvtieeiiee ettt e ettt et e et e e ettt eesteeesebee e sbeeesaeeensseeensseeensseesnsneesnseesnnseeennses 31
RESOUICE FIILETS ..couniiiiiiiiiiiieeee et 31
SYStEM FUNCHONSeeeiiiiiiiie ettt e et e e e e e e e eseaeeensaeeenbaeesnseeas 33
TRECAAING ..ottt ettt st e ettt et e e s e e sabeeenans 35
UDP NEtWOTKINGvvieeiiieeiiieeiieecite et etee ettt e e e e stae e et eeeaaeesnseeesnseeennnes 40

UDPTERM/IOZEVENt ULHILIES ...ceeuviieiiiieiiieeiiie ettt 43

INVOKING UDPTEIMN ..c.evviiiiiieciieecte ettt ettt eae e e svae e sane e ennee e e 43

UserApp.c Sample Programi...........c.coovuiiiiiiiiiiiiiieeeeeeeeeeeee et 49

Introduction

An advanced programming capability is supported by the Blue Fusion

series of controllers, over and above the standard Quickstep™

environment. This allows independently compiled 'C' programs to be

loaded into memory for execution alongside Quickstep programs. CTC

recommends that only the most advanced programmers should consider

the use of the features described in this document. This restriction is
necessary due to the fact that extensive control is given to the 'C' (simple C++ is also
supported) user functions and improper use can result in an unsafe controller. This
document describes the environment available within the 5300 controller. In most cases
previous 5100/5200 ‘C’ code should execute on the 5300, once re-compiled.

The 5300 ‘C’ API is a superset of the API used on the 5100/5200 and is the architecture
upon which QuickBuilder™ executes, thus it is well tested. In theory the ‘C’ API can be
used in conjunction with QuickBuilder but this is not recommended. QuickBuilder
provides an integrated capability where ‘C’ functions can be included with your high
level code providing a much cleaner environment. It is also possible to use the API
described within this document to program the entire controller in ‘C’. Given
QuickBuilder actually generates ‘C’ code that complies to this API, we again
recommend using QuickBuilder to expedite project development.

6 MB of dynamic memory resides in the 5300 controller where user programs can be
loaded and executed. Currently programs reside on the flash disk in the
/_system/Programs directory. Multiple programs may be resident, each
loaded/unloaded by Quickstep and script control running the ‘run userprogram
<filename>’ script command.

'C' and ‘C++” programs have access to virtually all the resources of the 5300 and more
can be added as is needed. Currently access to serial communications, UDP packets,
TCP virtual serial ports, motion control, analog, digital, register, variants, step logic, etc.
is available. User functions can be called upon initialization, periodic tics, as an
independent Quickstep step, and even as a totally separate thread. An independent
memory and heap area is used, including the 'C' library that is linked. Virtual function
calls are used to expose the Quickstep environment.

Additional functionality will be added to the ‘C’ programming environment, upon review
of customer requests. CTC believes the growth of this aspect of the product is best
initiated by the user community. If you believe that you need features not described
within this document, contact your CTC regional sales representative.

Compiler

The compiler is available from MicroCross’s website and is based on GNU, at
http://www.microcross.com/html/visual x-tools.html. Only the gcc compiler V3.4 is
supported by to the 5300, for the Atmel ARM9. . Various manuals documenting the
compiler are available from MicroCross and RedHat at
http://www.redhat.com/docs/manuals/gnupro. Since the compiler is an open source
product MicroCross is providing support for the tools for their fee. If you do not wish to
have tools support, the compiler is available free of charge from Control Technology’s
web site, http://www.ctc-control.com/customer/idxdownloads.asp as a zip file. The zip
file is quit large, around 700 Meg, but does contain all necessary files, including the
development source code.

No compiler support is provided by CTC, only MicroCross on a fee basis.

Full floating point capability is supported by the 5300 although the printf, sprintf, and
vsprinf functions that reside within the GNU libraries are not used, and have been slightly
modified. A full build environment, with makefile, is also available for 'C' User function
development. They are supplied as a .zip file, 5300UserC. zip, for installation in the
5300UserC directory.

Distributed 'C’ Files:

The CTC 'C' Programming zip file contains a number of files. The ‘C’ source files are
located in the 5300UserC/Source subdirectory, header files in
5300UserC/Headers. Files of interest are:

CoreFunc.c — CTC provided file, not to be modified, which provides a clean interface
to the controller OS exposed virtual function table. A table of pointers to core OS
functions is maintained and isolated by this module.

UserStart.c — CTC provided file, not to be modified, which contains printf/sprintf
substitute, memory allocation routines and some other general functions.

UserApp.c - User program and sample code, contains 'C' main function entry point
and is the file that the user will modity.

uTable.h - Main include file and definition file for virtual function calls and
user/Quickstep interface structures.
aload.srl - Output file of sample build. When placed in the controller

/_system/Programs subdirectory, it may be loaded and executed using the run
userprogram script command.

makefile— Rules file for building user ‘C’ application programs.
build5300.bat — Example build file on how to modify the file environment to build
an srl file for the 5300.

Features

'C' user programs are available to provide advanced functionality. They may be used in a
number of scenarios to enhance the Quickstep language and/or work independently.
Some examples are:

Resource Filters

A resource filter is a 'C' function that will be called whenever a read or write is made to a
resource. The actual value is presented to the 'C' function and it may simply return the
same value or modify it as desired. Resource filters can be installed for any Data
Register, Data Table access, Analog Input/Output values, and/or Motion values. Filters
can provide universal conversions such as scaling, complicated floating point math
calculations, maintaining your own 'C' tables and arrays, or virtually any other
manipulation that is required while intercepting a Quickstep or Network read or write
operation to a resource.

Tasks

'C' functions can be called just like Quickstep steps, accessing the same resources,
manipulating data, custom communications protocols, string manipulation, etc. Access to
the standard Quickstep task round robin loop is available. User functions can be called
once per task loop, or as super tasks, after each Quickstep step.

Communications

User functions have complete access to both the standard serial port raw data and TCP
virtual serial ports (see Lantronix COBOX terminal server), and UDP raw socket packet
interface. This allows for easy manipulation of string data for placement in registers and
the addition of custom communication protocols.

Motion Control (TBD)

User functions have complete access to the same function calls made by Quickstep to add
complicated motion control algorithms. Filters can be added to Motion registers to ease
the calculation of arc, build tables on the fly, etc.

Program Control

Just as multiple Quickstep programs can reside and be dynamically loaded from the flash
disk, User Programs can also be changed dynamically.

Expansion

As new features are needed, the 'C' User Function interface will be expanded with
additional capabilities added, based on real world input. Library functions are expected

5300 ‘C’ User Programming Guide

to be made available for standard conversions, filter examples, motion control, and
advanced communications.

Control Technology Corporation 8
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

Tools

The compiler tools are based on open source, industry standard GNU
gcc, freely distributable and extremely stable. This provides a very cost
effective development environment while benefiting from a large
community of developers. The instructions below detail use of the
downloadable zip file, available on CTC’s web site. It is assumed that if
the tools are purchased from Microcross the user will follow their

instructions.

Cygwin v1.5.9 Installation (compiler)

Insert Microcross CD labeled “CYGWIN” (v1.5.9) or extract the downloaded zip file to a

directory of that name. The welcome message will appear if autorun starts properly,
otherwise double-click the setup application and the following Welcome screen will

appear.

File Edit Miew Fawaorites Tools Help

eﬁack - 'k._.,'] lﬁ /"—h] Search lL Folders v

cEMIgocy 3 Cygwin 1.5.9

Mame =
b ox0409

j‘}ﬂ.utnrun

File and Folder Tasks e

®i Rename this file

L& Move this file

) Copy this file

& Publish this file to the Web
() E-mail this File

¥ Delete this file

L oatat
@instmsia
@instmsiw

Control Technology Corporation
Document 951-530004-0001 02/07

ﬁ?}'tygwin For GMU ¥-Tools +3.40

Size

6 kB

1KE

3,322 KB
170,151 KB
1,660 KB
1,750 KE
245 KB
ZKE

9

5300 ‘C’ User Programming Guide

i@ Cygwin for GNU X-Tools ¥3.40 - InstallShield Wizard X

Welcome to the InstallShield Wizard for
Cygwin for GNU X-Tools v3.40

The Instalshisld(R) Wizard will install Cygwin For GRU ¥-Toals
%340 on vour computer, To continue, click Mext,

WARMNING: This program is protected by copyright law and
inkernational treaties,

< Back [Mext = d [Cancel]

Click <Next> and the license agreement will appear.
e Cygwin for GNU X-Tools v3.40 - InstallShield Wizard

License Agreement

Please read the following license agreement carefully,

[C1 2000-2004 Microcross, Inc.

GHNU GEMERALL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1859, 1991 Free SJoftware Foundation, Inc.
58 Temple Place - 23uite 330, Boston, MA 02111-1307, U334

% accepk the kerms in the license agreement

do not accept the terms in the license agreement

[< Back. ” Mexk =] [Cancel]

Click <I Accept> followed by <Next>. A screen requesting user information will appear.

Control Technology Corporation 10
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

i Cyegwin for GNU X-Tools w3.40 - InstallShield Wizard

Customer Information

Please enter wour information.

ser Mame:

Organization:

]Cu:untru:ul Technolalgy Corpaoration

Install this application For:

(%) Arvone who uses this computer (all users)

) Only For me (Kevin Halloran)

[< Back][Mext =] [Cancel]

The default installation folder will appear, click <Change> if anything other than
C:\Cygwin is desired, then click <Next> to proceed.

i Cygwin for GNU X-Tools ¥3.40 - InstallShield Wizard

Destination Folder

Click Mext ko inskall ko this Folder, or click Change to install to a different Folder, ©

G Inskall Cygwin Far GRU ¥-Tools v3,40 kot

Cicygun,

TekFallckiald
<1 'r.". (= |l | ':F. 1 =

[= Back][Mexk =] [Cancel]

Control Technology Corporation 11
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

A summary of the current settings will appear, click <Back> to make changes or
<Install> to begin:

i Cygwin for GMU X-Tools ¥3.40 - InstallShield Wizard

Ready to Install the Program

The wizard is ready to begin installation,

If wou wank bo review or change any of wour installation settings, click Back, Click Cancel to
exit the wizard.

Current Setkings:

Setup Type:
Typical

Destination Folder:
i),

IJser Information:
Mame: Kevin Halloran

Company: Control Technaolalgy Corparation

[< Back.]Lt\;nstall] [Cancel]

Installation will begin and a progress bar and ‘Status’ message will appear:

i*.% Cygwin for GNU X-Tools ¥3.40 - InstallShield Wizard

Installing Cygwin for GNU X-Tools ¥3.40

The program Features wou selected are being installed.

Please wait while the InstallShisld Wizard installs Cygwin For GHU ¥-Tools
v3.40, This may take several minutes.

Status:

[--------------]

ek Mexk = Cancel

Control Technology Corporation 12
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

Once the installation is finished the below dialog will appear, click <Finish>:
i Cygwin for GNU X-Tools ¥3.40 - InstallShield Wizard [E|

InstallShield Wizard Completed

The InskallShield Wizard has successfully installed Cyawin Far
GhU E-Tools 3,40, Click Finish to exit the wizard.

= Back | Finish | Cancel

The generic ‘C’ compiler is now installed. In next section the CD containing the
specific tools and libraries for the ARM environment will be installed.

Control Technology Corporation 13
Document 951-530004-0001 02/07

GNU X-Tools V3.0b for Windows Installation

Cygwin v1.5.9 must be installed prior to proceeding.

Start the GNU X-Tools Shell using the desktop icon that was installed with Cygwin.

You should get the GNU X-Tools banner upon startup of the command shell. This shell
is for inputting UNIX style commands.

GNU X-Tools Shell N

Microcross, Inc.
Free Software Foundation
Cygnus Support

: Hosts of Contributors

on GHU Bash Shell and xtools commands...

*xtools <target—alias?>’ to set up for a cross target.
(i_e., xtools arm—elf>

*sxtools help® to get help on xtools commands.

*help’ to get Bash Shell help.

'Ctrl-d® to exit.

Insert the GNU X-Tools CD into your CD drive or unzip the appropriate file to a
temporary directory. Type the following commands to install your tool-suite of choice:

Smount (Enter)

Smount

MoourlyjoesProjectssGHlgoel34nCygwin 1.5.9 on “mntscdrom type system <(hinmode?

C:~Cyguinsusrsxlirbeslibsaxdisfonts on Ausr/H11R6/1ibs¥11/Fonts type system {bhinmo
de >

C:~Cygwinsbin on Ausr- bin type system C(hinmode?

C:~Cygwin~1libh on susr~s1lih type system (hinmode>
IC:~Cygwin on ~ type system ‘hinmode?
c: on Scygdrivesc type user C(hinmode.noumount?

-

If the mount of the ‘/mnt/cdrom’ is mapped to your CDROM drive letter with GNU X-
Tools, then skip over to Installation of GNU X-Tools; otherwise, perform the following

steps to mount your CDROM to the proper drive letter. From then on the mount will stay
permanent unless changed:

$ umount -s /mnt/cdrom (Enter)

$ mount -s -b —f <CD-drive-letter>: /mnt/cdrom (Enter)
e.g., mount -s -b -f d: /mnt/cdrom (Enter) (assuming d: drive)

If you are referencing an area on a hard disk that the xtools were unzipped to then mount
the cdrom pointing to the mapped disk drive, which is pointing to that directory.

Example: Unzipped files are in the ‘Xtools 3.4’ subdirectory on the
\\curlyjoe\Projects\GNUgccV34\XTools 3.4 server drive. Therefore using Windows
tools create a mapped drive, for instance K: pointing to this subdirectory:

== Local Disk (C:)
Help

ZE Map Mekw e,
OEack T - 4 ir Disconnect NetwnrkDr...

Synchronize, .,

File Edit ‘iew Fawarites

P Address |G O
Folder Options. ..

Map Metwork Drive @

Windows can help waou conneck ko a shared netwark Falder
and assign a drive letter to the connection so that you can
access the Folder using My Computer,

Specify the drive letter For the connection and the Folder
khat waou want ko connect ko

Drive: ko b d

Falder: | VicurlwioelProjecksiGRUgE

Example: \\serverishare

Reconnect at logan

Connect using a different user name.,

Sign up For online storage or conneck to a
network server,

[Finish][Cancel

Now mount the mapped drive:
$ mount -s -b -f K: /cygdrive/k (Enter) (assuming K: drive)

Smount

G~ Cyguinsusprsxllivb~libsxlisfonts on Ausr/B11R6-1ibs811fonts type system Chinmo
de »

C:~Cyguwin~bin on ~susr-bin type system (hinmode>

C:~Cygwin~lih on susr-slih type system <hinmode>
C:=“~Cyguwin on ~ type zystem C(bhinmodel

c: on Scyugdrivesc type user ¢Chinmode.noumount?
k: on AJcygdriversk type user <(hinmode,noumount>

Typing the mount command, as above now shows the /cygdrive/k has been created and is
mapped to the K: drive.

Now we are ready to install the X-Tools and Visual GDB for the ARM processor. First
install the X-Tools and ARM specific libraries:

$ xtools install arm-elf /cygdrive/k/bin (Enter)

BEE
B

Sxtools install arm—elf Acygdrivesk-/hin
Installing toolchainsproduct arm—elf from scygdrive-sksbhin to ~
uzr-hins/arm—elf—addr2line
uzr-hinsarm—elf-addr2line .exe
usr-hinsarm—elf—ar
uzr-hin/arm—elf—ar.exe
uzr-hinsarm—elf-as
usr~hinsarm—elf-as.exe
usr/hinsarm—elf—c++
usr-hinsarm—elf-ct++._exe
usr~hinsarm—elf-c++filt
usr/hinsarm—elf—c++filt.exe
uzr-hinsarm—elf—cpp
uzr-hinsarm—elf—cpp.exe
usr-hinsarm—elf—g++
uszr-hinsarm—elf—qgcc
uzr-hinsarm—elf-gcc—-3.4.8
usr-hinsarm—elf—gcc.exe
usrsbinsarm—elf —gcouv
uzr-hinsarm—elf—gcov.exe
usr~hinsarm—elf—gdh
usrsbinsarm—elf —gdh.exe
uzr-hinsarm—e l1f —gdhtk
usr-hinsarm—elf—gdbtui

Verify Compiler Installation

Once installed, you can easily verify the proper operation of your toolsuite by running a
test suite in the Cygwin directory. Follow these steps using the GNU X-Tools Shell:

$ xtools arm-elf (Enter)

Sxtools arm—elf
Setting up Shell for arm—elf

arm—elf GHU ¥-Tools Shell Ready...
arm—el1f%

arm-elf$ cd /home/test (Enter)

arm-elf$./run-all (Enter) (dot forward slash run-all)

T

Compiling strtst.c
Runnlng strtst.c

hello, world

Compiling struct.c

Running struct.c

PASS : struct

Compiling taylor.c

Running taylor.c

taylor: checking convergence of taylor sine series

taylor converged after 12 iterations

Compiling trigtst.c

Running trigtst.c

Trigtst: Computing trig, inverse functions for 368 vectors
on a unit circle

Upon completion select <Exit> and reboot your PC.

Final System Configuration

To ensure a proper installation you should build the test program. Change your current
directory to where you put the 5300 User C software and type build5300. Output should
appear similar to below:

C:.53080serC>builds300
C:~5380lserCirerase aload.srl
C:~5300UserCrerase =*.0
C:~5308UserCrerase aload.x
C:~5308lserCrerase makefile

C:=~53080serCrcopy 5308 =_x
L300~aload.srl
L3AB~aload.x
L3I0 makefile
3 fileds> copied.

C:=-53080zerCrmake

arm—elf—gce —g —0 —mepu=arm?tdmi —Wall —fno—builtin -¢ -I.-Headers -I. —-I..-1ibhs=s
—DLITTLE EHDIHN —DMODELS2808 —¢ -0 UserStart.o .-SourceslUserStart.c

arm—e 1f —g —0 —mcpu=arm?tdmi —Wall —fno-builtin —¢ -I.-/Headers -I. —-I..-1libs
—DLITTLE ENDIHN -DMODELS 288 —¢ —0 CoreFunc.o .- SourcesCoreFunc.c

arm—elf—gcc —g —0 —mcpu=arm?tdmi —Wall fno—builtin —¢ -I.-Headers -I. -I..-1libs
—DLITTLE_EMDIAN -DMODELSZ208 —¢ -0 wuserflipp.o .~Sourcesuserfipp.c

arm—elf—1d —o aload.abs UserStart.o CoreFunc.o userfApp.o -Taload.x —Map aload.mal
p —LAsusrslibrsgcc—librarm—elf 3 .4. 87 —L..-s1libs —lstdc++ —1Im —-1lc —lgcc
arm—elf-objcopy —R .comment -85 -0 srec aload.abs aload.se

.sspecmem aload.sr aload.srl

grm—elf—nhjcupy —R .comment -0 elf32-little aload.ahs aload.elf

one

rm aload.sr

C:~53000serC>

A file called aload. srl should now appear. This file is the loadable module to be
executed by the controller. Its file size should be about 118,880 bytes. This sample
program simply takes any value written to registers 2 through 6 and divides it by 2. It
also contains an example on how to use the serial and UDP network ports. Its source
code is contained within UserApp.c.

As a test install this file on your controllers /_system/Programs subdirectory and then by
using telnet execute “run userprogram aload.sr1”. Write a 10 to register 2 and then read
it back, the result should be a 5.

Setting up the 'C' programming environment for your particular editor or specially
configuring directory structures is beyond the scope of this document. Refer to the
documentation supplied by Microcross when necessary. Typically source files are placed
in the Source subdirectory and header files in the Header subdirectory. If a new source
file is added make sure to also edit the makefile and add where needed, using an existing
file as an example.

Loadable ‘C’ User Functions and Hilters

‘C’ User Functions are compiled and linked into a single .srl file. This

file is placed in the /_system/Programs directory, on the flash disk. It is

loaded using the “run userprogram filename.srl1” script command, into

SDRAM memory (reference map). The ‘run’ script command can either

be executed at the command line, via Telnet, or embedded in a script file

and executed by writing the script number to register 12311. Reference
the Script Language Guide; #951-520003 (5200), for additional information.

5300 System Memory Map
FLASH
Location Address Range Max Bytes Bus

Main Memory Board - 0x10000000 to Ox103FFFFF

3 4M
?OOt Monitor and tfs/elf Not available for user. 16
image storage for
booting main program (320 series flash chip)
Main Memory Board — 0x14000000 to Ox17FFFFFF
. 4M 16
{FLlxsin D (up to 320 series flash)
Main Memory Board — 0x01800000 to 0x01BFFFFF
: : 4M 16
(gD (afitoiiel) (up to 320 series flash)
Total Maximum 12M
NV-RAM (Battery Backed)
Location Address Range Max Bytes B.us
Width
Main Memory Board — 0x80000000 to 0x801FFFFF 2M
Static Ram (first IM
32
reserved*)

*subject to change

Top Memory Expansion 0x80200000 to 0x802FFFFF

Board M 32
Total Maximum 4M (3M
user)

SDRAM (Dynamic Memory, volatile at hardware reset and power down)

Location Address Range

Main Board — Execution 0x20000000 to 0x21FFFFFF

area for firmware and 0x20000000 to 0x20FFFFFE (16M)
‘C’ User programs Program execution area, copied from flash, as
well as heap space (about 11M)

0x21000000 to 0x215FFFFF (6M)

User available area, volatile ram disk, etc. CTC 32M 32
reserves the right to use for feature e;nhancements (12M User)
thus if use start with high memory first.
0x21600000 to 0x21BFFFFF (6M)
'C' Development area
0x21C00000 to 0x21FFFFFF (4M)
Auvailable, FTP re-flash area @ 0x06c00000.
Total Maximum 16M
(12M User)

Resource Filter Example

A Resource Filter allows a 'C' User Function to modify a value prior to the application
program receiving it or on a write operation, prior to it being written to the actual
resource. To implement a filter a User Function must first be registered with the
Quickstep OS, along with what Resource parameters will cause it to be invoked. A
RESOURCE_INFO structure is filled out and passed to the ‘“addResourceFilter”
function, specifying the type of resource to be monitored, read and/or write operation,
and the assigned resource number range. For example, adding a filter to register #2 is
given below. Only register 2 is monitored since the start and end range are the same:

RESOURCE_INFO resource;
void *handle;

// Lets install a filter function as a sample

resource.type = RESOURCE_REGISTER;

resource.start = 2; // lets filter register 2
resource.end = 2; // no range, only 2 for now
resource.mode = RESOURCE_READ; // read operation only

// Now add the filter...
handle = addResourceFilter (&resource, sampleFilter);

The sampleFilter function will simply divide any read operations by 2. Therefore, if
Quickstep or CTCMON were to read register 2 and a 40 was contained in it, the value
actually read back would be 20. This same technique can be used for any available
resource. By changing resource.end to a 6 (as in supplied sample program
UserApp.c), arange of registers can be specified. Below is a simple filter function:

int sampleFilter(void *handle, FILTERPARAMS *params, STDVAL value, RETVAL #*status)
{
// This sample filter simply processes a read or write operation on a register
switch(params->mode)
{
case RESOURCE_READ:
// Someone is attempting to read the register, actual value in "value"
// Let's divide it by 2 just for test purposes
if (value) // don't divide by O...
value = value/2;
break;
case RESOURCE_WRITE:
// This won’t be called since we only defined for READ, bits are Or’ed
break;
!
// Return new or same value to use
return value;

}

When finished with the filter, during cleanup, make sure you call
releaseResourceFilter, passing the handle of the resource.

Virtual Table, User and Quickstep

It is recommended that the programmer reference the sample programs included in the
distribution. Much of the detail provided below references the internal operations and is
not necessarily needed to construct user functions.

Two virtual tables exist which expose functions that are available, both of which are
defined in uTable.h. VTABLE_QS is the table provided by the 5300 OS and contains
the function calls available for the user program (other than the standard C library).
VTABLE_USER is the table that is filled in by the user program, as required. As a quick
reference the tables are defined below:

* struct vtableQS - Quickstep OS Function table *

* *
* Virtual function table for access to Quickstep functions. *
* This table is initialized by Quickstep OS at powerup. *

typedef struct vtableQS

{
REGISTER_GET regRead; // read a Quickstep register
REGISTER_PUT regWrite; // write a Quickstep register
COMM_SENDMSG commSendMsg; // Send a string out a serial port
COMM_GENERICCMD commGenericCmd; // Send a command to a serial port
COMM_GET_RQST commReadMsg; // Read a message from a serial port
ADD_RESOURCE_FILTER addResourceFilter; // add a resource filter to the access list
REMOVE_RESOURCE_FILTER removeResourceFilter; // remove a resource filter from the access list
GET_SYSTEM_TICS systemTics; // Returns number of tics since powerup, in ms.
PRINTF printf; // printf function redirected to UDP debugger output screen
SPRINTF sprintf; // sprintf function used by Quickstep, protected by mutex
LOGEVENTPLUS logEventPlus; // Log a predetermined value type and value/string to the event log
LOGEVENT logEvent; // Log a low level value into the debug event log
FIREWATCHDOG fireWatchdog; // Reset a watchdog timer, Quickstep calls it continually.

// If for any reason not return control must be called in
// less than 86 ms. or reset will occur.

ENTER_STEP_ATOMICITY enterStepAtomicity; // Obtain ownership of step atomicity
EXIT_STEP_ATOMICITY exitStepAtomicity; // Release ownership of step atomicity...

koo i * k)
// below virtual functions are for advanced use only and not
// offered for general support

sk skl sk skololkok ol skesiololok sololok dolokoksolokok k

*okkokok sl ot/
MOTION_GET_NUMMOTORS Motion_GetNumMotors; // Get number of motion objects in system
MOTION_GET_ATTRIBUTE Motion_Get_Attribute;
MOTION_PUT_ATTRIBUTE Motion_Put_Attribute;
MOTION_READY Motion_Ready; // Get state of motion object

MOTION_SIMPLE_COMMAND Motion_Simple_Command;

THREAD_CREATE thread_create; // Create a new thread

THREAD_SUSPEND thread_suspend; // Suspend an existing thread
THREAD_RESUME thread_resume; // Allow a suspended thread to resume operation
THREAD_SLEEP thread_sleep; // Sleep for the specified number of tics (1ms/tic)
MUTEX_CREATE mutex_create; // Create a mutex object

MUTEX_GET mutex_get; // get control of the mutex

5300 ‘C’ User Programming Guide

MUTEX_PUT mutex_put; // give control of the mutex back

MUTEX_DELETE mutex_delete; // Destroy the mutex, giving all memory back
BYTE_ALLOCATE tx_byte_allocate; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
BYTE_RELEASE tx_byte_release; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES

BYTE_POOL_CREATE tx_byte_pool_create; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
BYTE_POOL_DELETE tx_byte_pool_delete; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES

INTERRUPT_CONTROL interruptControl; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES

COMM_NETWORKOPEN commNetworkOpen; // Open a network connection/socket spawning RX thread

COMM_NETWORKCLOSE commNetworkClose; // Close a network connection

COMM_NETWORKSEND commNetworkSend; // Send data on a network connection
EHEkik BELOW ONLY COMPATIBLE WITH 5300 CONTROLLER % sk dskk/

REGISTER_VGET regVRead; // read a Quickstep register as a Variant

REGISTER_VPUT regV Write; // write a Quickstep register as a Variant

REGISTER_LOCK regLock; // Register mutex lock set

REGISTER_UNLOCK regUnlock; // Register mutex unlock

TASK_SETBRANCH taskSetBranch; // Set the step to branch to upon return from 'C' API

TASK_STEPLOCK taskStepLock; // Set the step lock flag to force execution of next step

// of present task without loosing atomicity

TASK_CREATETASK createTask; // Create a Quickstep Task

TASK_KILLTASK killTask; // Kill a Quickstep Task

TASK_GETTASKFROMHANDLE getTaskFromHandle; // Get TASK * from a TASK handle

RUNCMD_ALLOCATE allocateCommandParser; // Allocate an environment for Script Command Processing

RUNCMD_RELEASE releaseCommandParser; // Free an environment used for Script Command Processing

RUNCMD_RUN runCommandParser; // Run a Script Command

RUNCMD_GETRESPONSE getCommandResponse; // Get a Script Command response, copying it to a local buffer

// File system calls

CTC_FOPEN CTC_fopen; // Open the desired file to type of access desired and return handle for further access
CTC_FILELENGTH CTC_filelength; // Get file length

CTC_FCLOSE CTC_fclose; // Close file openned by CTC_fclose()

CTC_FEOF CTC_feof; // Check for end of file

CTC_FWRITE CTC_fwrite; // Write to file

CTC_FTELL CTC_ftell; // Get current file position

CTC_FFLUSH CTC_ftlush; // Flush open file

CTC_FREAD CTC_fread; // Read from file

CTC_FGETS CTC_fgets; // Get a line terminated with CR LF from an open file

CTC_FPUTS CTC_fputs; // Write a null terminated string to an open file

CTC_FSEEK CTC_fseek; // Seek to specific position in a file. Origin is ignored, always from start of file
CTC_GETFILENAME CTC_getFileName; // Return pointer to the name of the openned file within a directory block
// DIRECTORY FUNCTIONS

CTC_RMDIR CTC_rmdir; // Delete a directory

CTC_PWD CTC_pwd; // Get current position in a directory tree

CTC_CD CTC_cd; // Change directories

CTC_MKDIR CTC_mkdir; // Create a new directory

CTC_FORMATDISK CTC_formatDisk; // Format the disk

CTC_GETFULLFILENAME CTC_getFullFileName; // Get full file name with path information
CTC_VOLUMEGETINFO CTC_volumeGetInfo; // Get Flash disk information at disk level
CTC_FINDFIRST CTC_findfirst; // Initialize CTC_FIND_DATA structure and get information on first file

CTC_FINDNEXT CTC_findnext; // Get CTC_FIND_DATA information on next file in directory tree
CTC_FINDCLOSE CTC_findclose; // Terminate the directory tree walk initiated with the CTC_findfirst() call
CTC_REMOVE CTC_remove; // Delete a file

CTC_RENDIR CTC_rendir; // Rename a directory (ram disk and SDISK only)

CTC_RENAME CTC_rename; // Rename a file

CTC_GETFILEINFO CTC_getFilelnfo; // Get information on a file that is not open, by name and path only

} VTABLE_QS;

* USER VIRTUAL FUNCTION TABLE PROTOTYPE DEFINITIONS *
sk sk
* Virtual function table hooks for access by Quickstep OS *
Control Technology Corporation 2

Document 951-530004-0001 02/07

W

5300 ‘C’ User Programming Guide

* to call if defined during strategic points of system

* execution.

* This table is initialized by user within their main()

* function, with their 'C' functions, as needed, else place
* a NULL in the table entry *

typedef int (*USER_INITIALIZATION)(void); // Called when started, = main

* % X ¥

typedef int (*USER_OPERATION)(void *); // Called to invoke a user operation

typedef void (*TIMER_INTERRUPT_HOOK)(); // invoked every timer tic, don't stay here long!!!

typedef int (*TASK_LOOP_HOOK)(SYSMODE state); // invoked after all Quickstep tasks have executed, round robin
typedef int (*SUPERTASK_HOOK)(SYSMODE state); // invoked after each Quickstep task

typedef int (*SERVICELOOP_HOOK)(SYSMODE state); //invoked after each Quickstep task

typedef void (*END_ALL_TASKS_HOOK)(); // invoked if all tasks are told to end.

typedef void (*USER_SHUTDOWN)(); // invoked if about to load another user module on top of this one.
typedef void (*NEWTASKSTARTED)(TASK *task); // invoked when a new task is beginning, created.

typedef void (*TASKENDED)(TASK *task); // invoked when a task is shutting down

typedef void (*QS4CONTROL)(int reason, void *info); // invoked periodically with 'reason’ and 'info', reason specific.
typedef void *(*QS4OBJECTTABLE)(int *size); // invoked to access QS4 object table pointer and size

typedef int (*QS4_OBJACCESS)(int write, int objnum, int propnum, int proptype, void *resultVal); // invoked to access QS4 object
// property value when indirection flag set

* struct vtableUser - User Defined Function table *
* *
* Virtual function table for access to User functions. *
* This table is initialized by user within their main() *

* function, upon initial loading into memory and prior to *

* operation *

#define VALID_USER_SIGNATURE 0x10adf7L // Special identifier at start of User table, required
#define USER_VERSION_MASK 0xffff0000L

#define USER_ENTRIES_MASK 0x000000ffL

#define USER_VERSION_REQUIRED 0x00010000L // Not currently used

#define USER_ENTRIES_REQUIRED 13 // Number of function entries in the vtableUser structure
typedef struct vtableUser
{
long signature; // Unique value to verify table is correct type
long version; // Version control information to ensure compatibility
USER_INITIALIZATION initialize; // User routine to be called at start, main() function
USER_OPERATION function; // NOT USED
TIMER_INTERRUPT_HOOK timerTic; // Invoked on every timer tic (1ms) if defined
TASK_LOOP_HOOK taskLoop; // Invoked as a normal Quickstep step if defined

SUPERTASK_HOOK superTaskLoop; // Invoked after each Quickstep step, like a super task
SERVICELOOP_HOOK serviceLoopHook; // Invoked outside the Quickstep main loop when steps not running
END_ALL_TASKS_HOOK endAllTasks; // Invoked if all tasks are being shutdown by a Quickstep Cancel command

USER_SHUTDOWN userShutdown; // Invoked when a new "C" module is being loaded for cleanup purposes
NEWTASKSTARTED taskStart; // Invoked when a new task is beginning, created.

TASKENDED taskEnd; // invoked when a task is shutting down

QS4CONTROL qs4Control; // invoked periodically, based on specific 'reason’ parameter

QS40BJECTTABLE QS4ObjectTable; //invoked to access QS4 object table pointer and size.
QS4_OBJACCESS QS40bjAccess; // invoked to access QS4 object table property value when indirection set)
} VTABLE_USER;

The function definitions and calling parameters are discussed in the “VTABLE_QS
Function Prototypes and Definitions” section. The VTABLE_USER contains entries
which are previously set up and may be modified by the user. The table exists at the end
of the CoreFunc. cfile:

// Below is main table referenced by the Quickstep Operating System, tread carefully when changing
// as it must match that of the OS... NOTE: Change version and entries number in table!!!
const VTABLE_USER localUserCommand __attribute__ ((section (".ftable"))) = {
VALID_USER_SIGNATURE, //signature
0x0001000C, /#version 00.01, 12 entries
main, // initialize

Control Technology Corporation 24
Document 951-530004-0001 02/07

NULL, // function unused

NULL, // timerTic;
taskLoop, // taskLoop;

NULL, // superTaskLoop;
NULL, // serviceLoopHook;
NULL, // endAllTasks;
userShutdown, // userShutdown;

taskStart, // newTaskStarted; (called if non-null when task first created, allocate task user memory)
taskEnd, //taskEnded; (called when a task is ending, free user task memory

NULL, // pidControl; invoked periodically, after all analog inputs are scanned

NULL // OS40bjectTable; invoked to access QS4 object table pointer and size.

IR

Twelve 5300 OS hooks are available for user modification. If a NULL is present then
no operation will be performed for that particular function call.

main — Required 'C' user Program entry point upon being loaded. Any initialization
should be done here and control promptly returned to the calling functions.

timerTic — This function will be called once per 5200 timer tic, from the interrupt
level, approximately 1 millisecond/tic. Control must be returned to the 5200
immediately.

taskLoop — This function will be called once per Quickstep step loop, just like any
other task. Quickstep steps are executed round-robin. Upon return the first
Quickstep task will have a step executed since the 'C' user function taskl.oop is
always the last task called. Note that step atomicity is maintained.

superTaskLoop - Same as taskLoop, except this function is called after each
Quickstep task executes a step.

endAllTasks — This function is called to notify the user function that there has
been a task “Cancel” command executed by Quickstep, causing task execution to
stop, and that any cleanup that should be done needs to be done now.

userShutdown - This function is provided in CoreFunc.c and is called
whenever a user program is about to be unloaded from memory and a new one
loaded. Frees all resources that have been allocated and returns control.

taskStart — This function is provided in CoreFunc. c and is called whenever a
Quickstep task is first started. It allows the user program to allocate memory or
prepare for anything task specific. Reserved for QuickBuilder.

taskEnd — This function is provided in CoreFunc.c and is called whenever a
Quickste task finishes, is done executing. Reserved for QuickBuilder.

qs4Control — This function is provided in CoreFunc. c and is called periodically
with analog values based upon scan rate. Used for PID control and reserved for
QuickBuilder.

QS40bjectTable — QuickBuilder use only.

QS40bjAccess — QuickBuilder use only.

VTABLE_QS Function Prototypes and Definitions

Below are a few multipurpose functions which were available on the 5100/5200.
Reference ‘CoreFunc.c’ and the “Model 5300 Enhancement Overview”, document 951-
530001, for additional available functions, including full file system access.

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION RELEASE
main PORTABLE C
1.0
DESCRIPTION
This function is the main input function called after a User
C file is loaded into memory for execution. Any initialization
required should be done and control returned.
MAKE SURE TO RETURN CONTROL AND DON"T TAKE LONG!!! IF CALLED BY
A QUICKSTEP RUNNING A SCRIPT, YOU MAY HAVE TO INVOKE A WATCHDOG
RESET FUNCTION IF SPEND MORE THAN 40 MS HERE (fireWatchdog())
INPUT
none
OUTPUT
0 = Initialization successful, allow User functions to execute
non-zero = Init failed, do not run User functions

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

5300 ‘C’ User Programming Guide

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

CALLS
— __main() call inserted by the compiler prior to any other code
- user define initialization routines, as required

CALLED BY
C User Function file loader (Quickstep 0S)

RELEASE HISTORY

DATE NAME DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

int Main (void) ;

Register Access

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION RELEASE
regRead PORTABLE C
1.0
DESCRIPTION

Read a Quickstep Register value.

INPUT
UINT16 RegNum — Register number from 1 to 64535 to read

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

INT32 *RegVal - Pointer to a 32 bit wide Integer to store the result*/

OUTPUT
RETVAL -
SUCCESS = function called properly
ERROR_NOT _DEFINED = Quickstep OS table not found
(also register specific return values defined in Errors.h)

CALLS
Quickstep OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HISTORY

DATE NAME DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

reTvAL FregRead (uINT16 RegNum, INT32 *Regval);

Control Technology Corporation
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION RELEASE
regWrite PORTABLE C
1.0
DESCRIPTION

Write a value to a Quickstep Register

INPUT
UINT16 RegNum — Register number from 1 to 64535 to read
INT32 RegVal - 32 bit wide Integer value to store

OUTPUT
RETVAL -
SUCCESS = function called properly
ERROR_NOT _DEFINED = Quickstep OS table not found
(also register specific return values defined in Errors.h)

CALLS
Quickstep OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HISTORY

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

rETVAL regWrite (uINT16 RegNum, INT32 Regval);

Communications

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION RELEASE
commSendMsqg PORTABLE C
1.0
DESCRIPTION

Send a buffer of characters out a serial communications port

INPUT

INDX port - Serial port to send buffer out on, 1 is COM1, 2 is COMZ,

virtual TCP connections are 3 to 7

UINT8 *msg — Pointer to unsigned character buffer containing message

UINT16 size — Length of message to send

OUTPUT
RETVAL -
SUCCESS = function called properly
ERROR_NOT _DEFINED = Quickstep OS table not found
(also register specific return values defined in Errors.h)

CALLS

Control Technology Corporation
Document 951-530004-0001 02/07

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

5300 ‘C’ User Programming Guide

/* Quickstep 0OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */

/**/

reTvalL, commSendMsg (1NDx port, UINTS *msg, UINT16 size);

/**/

/* */
/* FUNCTION RELEASE */
/* */
/* commGenericCmd PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function sends a generic message command (undefined format) of*/
/* length "size" to the specified "port" using the appropriate driver.*/
/* Any response 1is copied back to "msg"; the size of the of the */
/* response it copies back to "size". */
/* Messages can be used to change baud rate, etc... */
/* */
/* INPUT */
J* INDX port - Serial port to send buffer out on, 1 is COM1, 2 is COM2,*/
/* virtual TCP connections are 3 to 7 */
/* UINT8 *msg - Pointer to unsigned character buffer containing message*/
/* UINT16 *size — Pointer to unsigned short to store result length in */
/* */
/* OUTPUT */
/* RETVAL - * /
/* SUCCESS = function called properly */
/ * ERROR_NOT_DEFINED = Quickstep OS table not found */
/* (also register specific return values defined in Errors.h) */
/* */
/* CALLS * /
/* Quickstep 0OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/
/* Below are msg[] contents commands for each available. The command
must*/

/* be the first byte of msg[] upon calling the function.
COMMCMD_RQST _QUERY — READ
Check 1if the transmitter is free for message sending.
Upon return:

Control Technology Corporation 29
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

msg[0] = 0x00 if free.
msg[1l] = 0x01 if busy.
*size = 1.

COMMCMD_RQST _CLRBUF — WRITE
Clear the communications receive buffer.
Upon return:
msg[0] = COMMCMD_RSPN_ACK;
*size = 1;
COMMCMD_RQST _PARSING - WRITE
Turn parsing on or off based on the third byte of the message.
Set msg to:
msg[2] = 0 then disable parsing
msg[2] = 1 then enable parsing
Upon return:
msg[0] = COMMCMD_RSPN_ACK;
*size = 1;
COMMCMD_RQST GETCNT - READ
Return the current receive buffer count.
Upon return:
msg[0] = current count
*size = 1;
COMMCMD_RQST GETCH — READ
Retrieve the nth character in the receive buffer.
Set msg to:
msg[2] = offset in buffer with 0 being first character
Upon return:
msg[0] = character at position requested
*size = 1;
COMMCMD_RQST _SET _MODBUS — WRITE
Activate/Deactivate Serial port modbus and set global port to use.
Set msg to:
msg[2] = Modbus RTU serial port address 1 to 254, also enables, 0
disables
Upon return:
msg[0] = COMMCMD_RSPN_ACK;
*size = 1;
COMMCMD_RQST NEWBAUD - WRITE
Change the baud rate on the serial port (only physical, not virtual

work)

msg[2] = baud rate desired where 1 = 600, 2 = 1200, 3 = 2400, 4 =
4800,

5 = 9600, 6 = 19200 (default at powerup), 7 = 38400.

Upon return:

msg[0] = COMMCMD_RSPN_NACK 1if bad value, or COMMCMD _ RSPN_ACK if OK

*size = 1;
*/

reTvaL, comm@GenericCmd (1nDx port, UINT8 *msg, UINT16 *size);

/**/

/ *

/* FUNCTION RELEASE

/ *

/* commReadMsg PORTABLE C

/* 1.0

/* DESCRIPTION

/* This function invokes the driver associated with "port" and
Control Technology Corporation 30

Document 951-530004-0001 02/07

*/
*/
*/
*/
*/
*/
*/

5300 ‘C’ User Programming Guide

/* returns a pointer to the buffer that contains the request message. */
/* The message contents are NOT copied. If a request message from */
/* the port is not available, the "buf" pointer is set to NULL. The */
/* message contents are assumed to be encoded in one of the standard */
/* protocols. Size 1is set to the number of received bytes in the */
/* buffer, not the number of bytes in the message. */
/* */
/* INPUT */
/* INDX port - Serial port to send buffer out on, 1 is COM1, 2 is COM2,*/
/ * virtual TCP connections are 3 to 7 */
/* UINT8 **buf - Pointer to unsigned character buffer stored here or */
J* NULL if no message */
/* UINT16 *size — Number of bytes in buffer */
/* OUTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/ * ERROR_NOT_DEFINED = Quickstep OS table not found */
/* (also register specific return values defined in Errors.h) */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */

/**/

reTvAL COMMReadMsQ (1NDx port, UINT8 **buf,UINT16 *size);

Diagnostics

RETVAL |OgEvent(EventCode event, long parameter);

Resource Filters

/**/

/* */
/* FUNCTION RELEASE */
/* */
/* addResourceFilter PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function is called to add a resource filter to the Quickstep */
/* list. The resource to monitor 1s defined in the RESOURCE_INFO */
/* structure and passed as a parameter. A pointer to the 'C' function */
/* to call upon access 1is also passed */
/* */
/* INPUT */
/* RESOURCE_INFO *rsc - Pointer to structure defining resource and */
/* access method upon which to invoke the passed function */
Control Technology Corporation 31
gy

Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

/* FILTER FUNCTION func - Pointer to 'C' function to call when the */
/* parameters of the RESOURCE_INFO structure are satisfied */
/* */
/* OUTPUT */
/* void *handle - Handle returned by addResourceFilter or NULL if */
/* failed * /
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */

/**

* RESOURCE_INFO rsc - addResourceFilter parameter block

* This parameter block must be filled out prior to registering
* a callback function for a Quickstep resource. A pointer to

* it 1is passed to the addResourceFilter () function
**/

/*

typedef struct resourcelInfo {

* % % ok %

int type; // Type of resource to add filter to,
// RESOURCE_ANALOGIN, RESOURCE_ANALOGOUT, etc...

int mode; // Type of access to invoke filter on when accessed,
// RESOURCE_READ, RESOURCE_WRITE

int start; // Start number of resource (setting a range)

int end; // End number of resource, make same as start 1f

// only one (setting a range).
} RESOURCE_INFO;
*/

/**

* FILTER _FUNCTION func *
* *
* Type definition for Resource Callback function *
* *
* PARAMETERS: *
* void *handle - handle returned by addUserResourceFilter when *
* function was registered *
* FILTERPARAMS *params — Access information block to detail *
* what 1s being done *
* STDVAL value - Current value being read or written. *
* RETVAL *status - pointer to status code that will be returned *
* to Quickstep. Leaving it unchanged will *
* default to SUCCESS. Use only for defined *
* errors. *
* *
* RETURNS: *
* int - new value to return to Quickstep on a read or value to *
* write, 1f no change then return passed "value" *
Control Technology Corporation 32

Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

***/

void *addResourceFilter (ReEsourRcE_INFO *rsc, FILTER_FUNCTION func);

/**/

J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*

FUNCTION RELEASE
removeResourceFilter PORTABLE C
1.0
DESCRIPTION

This function is called to remove a resource filter from the
Quickstep list. A filter is removed by passing the handle that
was returned when it was first added.

INPUT
void *handle - Handle returned by addResourceFilter

OUTPUT
RETVAL -
SUCCESS = function called properly
ERROR_NOT _DEFINED = Quickstep OS table not found

CALLS
Quickstep OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HISTORY

DATE NAME DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

reTvaL removeResourceFilter (void *handie);

System Functions

RETVAL enterStepAtomicity(void);

RETVAL exitStepAtomicity(void);

/**/

J*
J*
J*
J*
J*
J*
J*
J*
J*

FUNCTION RELEASE
systemTics PORTABLE C
1.0
DESCRIPTION

This function is called to reset the watchdog system timer that
will cause a system reset and fault if not invoked every 86 ms.
Quickstep 0S will automatically call this function as required

Control Technology Corporation
Document 951-530004-0001 02/07

(O8]
W

*/
*/
*/
*/
*/
*/
*/
*/
*/

5300 ‘C’ User Programming Guide

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

but if a User Function runs as a step it must make the call if it
maintains control too long, preventing Quickstep OS from calling
the function.

INPUT
none

OUTPUT
unsigned long - number of system tics, in milliseconds since powerup

CALLS
Quickstep OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HISTORY

DATE NAME DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

unsigned long systemTics (void) ; // number of timer tics since

powerup, 1lms/tic currently

/**/

/*

/* FUNCTION RELEASE
/*

/* fireWatchdog PORTABLE C
/* 1.0

/* DESCRIPTION

/* This function is called to reset the watchdog system timer that
/* will cause a system reset and fault if not invoked every 86 ms.
/* Quickstep 0S will automatically call this function as required
/* but if a User Function runs as a step it must make the call if it
/* maintains control too long, preventing Quickstep OS from calling
/* the function.

/*

/* INPUT

/* none

/*

/* OUTPUT

/* RETVAL -

/* SUCCESS = function called properly

/ * ERROR_NOT _DEFINED = Quickstep OS table not found

/*

/* CALLS

/* Quickstep 0OS virtual table function pointer

/A

/* CALLED BY

/* As required by user code

/*

/* RELEASE HISTORY

/A

/* DATE NAME DESCRIPTION

Control Technology Corporation 34

Document 951-530004-0001 02/07

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

5300 ‘C’ User Programming Guide

/*
/*

*/
*/

/**/

reTval fireWatchdog (voiq) ;

Threading

/**/

J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*
J*

FUNCTION RELEASE
_tx thread create PORTABLE C
1.0
DESCRIPTION

This function creates a thread and places it on the list of created
threads.

INPUT
thread _ptr Thread control block pointer
name Pointer to thread name string
entry_ function Entry function of the thread
entry_input 32-bit input value to thread
stack_start Pointer to start of stack
stack _size Stack size in bytes
priority Priority of thread (0-31)
preempt_threshold Preemption threshold
time_slice Thread time-slice value
auto_start Automatic start selection
OUTPUT
return status Thread create return status
CALLS

Quickstep OS virtual table function pointer
CALLED BY
Application Code
_tx timer initialize Create system timer thread

RELEASE HISTORY

DATE NAME DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

unsigned int _tx_thread_create< TX_THREAD *thread_ptr,

Control Technology Corporation

/* Task Name */

char *name_ptr,

/* Routine and Parameter to pass */

void (*entry_function) (unsigned long), unsigned long entry_input,
/* Stack start and length */

void *stack_start, unsigned long stack_size,

(%)
()

Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

/* Priority and Threshold */
unsigned int priority, unsigned int preempt_threshold,
/* time slice */
unsigned long time_slice, unsigned int auto_start);

/**/

/* */
/* FUNCTION RELEASE */
/* */
/* _tx_thread_suspend PORTABLE C

*/

/* 1.0 */
/* DESCRIPTION */
/* */
/* This function handles application suspend requests. If the suspend */
/* requires actual processing, this function calls the actual suspend */
/* thread routine. */
/* */
/* INPUT */
/* */
/* thread_ptr Pointer to thread to suspend */
/* */
/* OUTPUT * /
/* */
/* status Return completion status */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* Application code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */

/**/

unsigned int _tX_thread_suspend (tx_THREAD *thread_ptr);

/**/

/* */
/* FUNCTION RELEASE */
/* */
/* _tx_thread resume PORTABLE C */
/* */
/* DESCRIPTION */
/* */
/* This function processes application resume thread services. Actual */
/* thread resumption is performed in the core service. */
/* */
/* INPUT * /
/* */
/* thread_ptr Pointer to thread to resume */
/* */
/* OUTPUT * /
Control Technology Corporation 36

Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

status

CALLS
Quickstep OS virtu

CALLED BY
Application Code

RELEASE HISTORY

DATE

Service return status

al table function pointer

NAME DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

unsigned int _tX_thl"ead_resume(TX_THREAD *thread_ptr);

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION
_tx _thread_sleep
DESCRIPTION

This function hand
sleep request was

INPUT
timer_ticks
OoUTPUT
status
CALLS
_tx timer_activate
_tx_thread suspend
CALLED BY
Application code

RELEASE HISTORY

DATE

RELEASE

PORTABLE C
1.0

les application thread sleep requests. If the
called from a non-thread, an error 1is returned.

Number of timer ticks to

Return completion status

Activate sleep timer
Actual thread suspension

NAME DESCRIPTION

sleep

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

unsigned int _tX_thread_S|eep(unsigned long tics);

/**/

/*
/*
/*
/*
/*

FUNCTION

_tx mutex create

RELEASE

PORTABLE C
1.0

Control Technology Corporation
Document 951-530004-0001

02/07

*/
*/
*/
*/
*/

5300 ‘C’ User Programming Guide

/* DESCRIPTION

A
J* This function creates a mutex
/* specified in this call.
/A

/* INPUT

/* mutex_ptr

/* name_ptr

/* inherit

A

/* OUTPUT

/* TX_SUCCESS

/*

/* CALLS

A

/* None

A

/* CALLED BY

/* Application Code

A

/* RELEASE HISTORY

Vs

/* DATE NAME
/*

with optional priority inheritance as

*/
*/
*/
*/
*/
*/

Pointer to mutex control block*/

Pointer to mutex name
Priority inheritance optio

Successful completion status

DESCRIPTION

n

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

unsigned int _txe_mutex_create(Tx_MUTEx *mutex_ptr, char *name, unsigned

int inherit);

/**/

A
/* FUNCTION RELEASE
J/*

/* _tx_mutex_get PORTABLE C
/* 1.0

/* DESCRIPTION

/A

/* This function gets the specified mutex. If the calling thread
/* already owns the mutex, an ownership count 1is simply increased.
J*

/* INPUT

/* mutex_ptr Pointer to mutex control block
/* walt_option Suspension option

J*

/* OUTPUT

/* status Completion status

/A

/* CALLS

/* _tx timer_activate Activate timer routine

/* _tx_thread suspend Suspend thread service

/* _tx mutex_priority_change Inherit thread priority

/A

/* CALLED BY

/* Application Code

J*

/* RELEASE HISTORY

/A

Control Technology Corporation
Document 951-530004-0001 02/07

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

5300 ‘C’ User Programming Guide

/* DATE NAME DESCRIPTION */
/* */

/**/

unsigned int _tXe_mutex_get (rx_MUTEX *mutex ptr, unsigned long
wait_option);

/**/

/* */
/* FUNCTION RELEASE */
/* */
/* _tx_mutex_put PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function puts back an instance of the specified mutex. */
/* */
/* INPUT */
/* mutex_ptr Pointer to mutex control block */
/* */
/* OUTPUT */
/* TX _SUCCESS Success completion status */
/* */
/* CALLS */
/* _tx timer deactivate Deactivate timer routine */
/* _tx_thread resume Resume thread service */
/* _tx thread _system return Return to system routine */
/* _tx_mutex_priority_change Restore previous thread priority */
/* _tx _mutex_prioritize Prioritize the mutex suspension */
/* */
/* CALLED BY */
/* Application Code */
/* */
/* RELEASE HISTORY */
/* */
/ * DATE NAME DESCRIPTION */
/* */

/**/

unsigned int _tXe_mutex_put(rx MUTEX *mutex_ptr);

/**/

/* */
/* FUNCTION RELEASE */
/* */
/* _tx_mutex_delete PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function deletes the specified mutex. All threads */
/* suspended on the mutex are resumed with the TX DELETED status */
/* code. * /
/* */
/* INPUT * /
/* mutex_ptr Pointer to mutex control block */
/* */
/* OUTPUT * /
/* TX SUCCESS Successful completion status */
Control Technology Corporation 39

Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

CALLS
_tx timer deactivate Deactivate timer routine
_tx thread resume Resume thread service
CALLED BY

Application Code
RELEASE HISTORY

DATE NAME

DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

unsigned int _tXe mutex_delete (rx_MuTEX *mutex_ptr);

UDP Networking

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION
commNetworkOpen

DESCRIPTION

This function requests that a Network UDP or TCP port be openned.

RELEASE

PORTABLE C
1.0

A RX thread will be spawned to automatically monitor the socket
state. This functions a USERCONNECTION control block that must

not be modfied after a successful call and
a connection HANDLE on other Network calls.

must be suppled as one of the USERCONNECTION parameters which will

should be treated as
A callback routine

be invoked whenever a change of state occurs, including packet

reception.

INPUT

USERCONNECTION *user — Structure used to pass connection/socket
information, must be initialized prior to call. Only
network type NETWORK_TYPE_UDP currently supported

OUTPUT
int — 0 if success and -1 1if failed

user—->state set to USER FAILED or USER _CONNECTING
NOTE: Once user—->state becomes USER_CONNECTED this structure
may be modifed and used for commNetworkSend operations

It is cloned by the network thread.

The copy 1is what 1is

modified and supplied to the callback function.

CALLS
Quickstep 0OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HISTORY

DATE NAME

DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

Control Technology Corporation
Document 951-530004-0001 02/07

40

5300 ‘C’ User Programming Guide

int commNetworkOpen (USERCONNECTION *user);

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FUNCTION RELEASE
commNetworkClose PORTABLE C
1.0
DESCRIPTION

This function requests that an existing network connection/socket
created with a call to commNetworkOpen, be closed. The same

USERCONNECTION structure passed to the commNetworkOpen call should

be passed to this function.

INPUT
USERCONNECTION *user - Structure used to pass connection/socket
information, must be initialized prior to call. Only
network type NETWORK_TYPE_UDP currently supported
Should be same USERCONNECTION passed to commNetworkOpen
OoUTPUT
NONE

user—->state modified to either USER FAILED or USER_DISCONNECTED

CALLS
Quickstep OS virtual table function pointer

CALLED BY
As required by user code

RELEASE HISTORY

DATE NAME DESCRIPTION

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

void commNetworkClose (UsERCONNECTTION *user);

/**/

/A
/* FUNCTION RELEASE

J*

/* commNetworkSend PORTABLE C

/* 1.0

/* DESCRIPTION

/* This function requests that a packet be sent on a connection

/* openned by commNetworkOpen. The USERCONNECTION control block

/* must contain the proper information.

/A

/* INPUT

/* USERCONNECTION *user - Structure returned by commNetworkOpen with
/* following parameters set as desired:

/* packetBuf - pointer to buffer to send

/* length - number of bytes to send

/* destIp — If UDP, destination IP address

/ * destPort - 1if UDP, destination port address

Control Technology Corporation 41

Document 951-530004-0001 02/07

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

5300 ‘C’ User Programming Guide

/* */
/* OUTPUT */
/* int — number of bytes queued */
/* user—->state set to USER FAILED or USER _DATAQUEUED */
/* NOTE: Limited queuing 1is available at the network stack level */
/* exceeding this will result in packet loss. Do not send */
/* a large number of packets to the host without using a */
/* protocol that can verify packets have been transfered. */
/* This is typically only a problem if you attempt to sit in a*/
/* loop continually transmitting data. */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */

/**/

int commNetworkSend (usErcONNECTION *user)

Control Technology Corporation 42
Document 951-530004-0001 02/07

UDPTERM/logEvent Utilities

UDPTerm is an unsupported tool which executes on your PC. It is
extremely useful while trying to debug 'C' User programs. It
communicates with the controller using UDP packets and listens for
output, such as that from 'printf' statements. It can be found in the
.\tools\UDPTerm installation directory.

LogEvent is a function call that can be used to write ‘unsigned long’ values to a log
buffer, for display from within UDPTerm. This is useful for low level debugging where
slowing the processor down with a printf statement could cause a problem. In addition,
‘logEvent is helpful when numerous writes are useful. It is also used internally by CTC
to log any exceptions that may occur or network connections, reboots, and other helpful
debugging information. A circular buffer is used. The function call consists of:

logEvent(EVENT_DEBUG,unsigned long); // where user supplies supply the unsigned long

When the controller is busy, 'printf’ output may not always appear so if there is
any question you will want to use the logEvent(EVENT_DEBUG,####); routine.

Invoking UDPTerm

To invoke UDPTerm, on your PC the IP address of the terminal and the port to send and
listen on is required. Only port 1202 is supported by the controller. The following
example shows how to connect to a controller with the IP address of 12.40.53.158:

UDPTerm 12.40.53.158 1202 1202

After contact is made press the Enter key a few times and the ‘Command:” prompt will
appear. There are numerous commands, some of the useful ones are:

thread the #00009 log was done with a

>

Startup

I - list log, logEvent values can be viewed with this command. For example in the

logEvent(EVENT_DEBUG,3015); function call.

‘Network

5o o S G e e o S
= = o & S
...... = o
=N N N N A =R =R=E= = =)
SR oococn =R R R
4 o T T b o e b = o
1=T S1=1=1
= Sl RT-RY=IT=1] = S
] = = 5) 5 = o
= o | = o BB R B gy & & &«
B & 54 55 60 &5 55 50 &
DG G5 5 LA L e e £ o e S
B o o o oD D D D
EEOEE GGG 54 B B0 B8 B0 B8 B0
= e
o B 151 o o0 0 o o o
= Sl
==
...... EEEEEEE o e & o
&S
== TR =
==t =
IIIIIII o e T ot
=
1 &
CEOEE GGG
v & 5)) [l L
+ F ey o
i |) S O) () ¢) (S |
1 = 1t
1|) 10 I S e e g e g g e 1=1
11 1 5 5 oA 28 = 5 5 5 ¢
3+ = S
1 1 | 1 G G G 5
1% 1
= S S - 1 64 £
13 1 1= |
v el b e s v lled b e |y - ra ra-r,
e A =t Lo
S G & & 5) 5 S)) ¢
Tttt S 11t
1| DS S S S S &
3 111 1-+% e
| = S =SS & &
1 111t 1t
= = S B IEEEE S
1 | | .
& | S & |) |)& |
=t 1t + %
=] 1
1 1
1= I | i i i e
+ + ! .
i | i | i |) |
=] 1| I | 1| o~
S § § § o o
I I - - -]
g + -
1 1 = B bR W
m.._ S_I_u
. m.u_ - = e
= # w o ooc =
mw ol WooWwmeas S
a0 S & S " ET LR
o il = e—wSmgeg S
...... — b= SCEUETE @ ET
— wrel = ko) DS SLRUUS S
< LR < QRETYw EM @
......... L o E O I g
23 4 £ S o W o o & mE m nmnnnn Il E
X hoo — E EES
B G \ 1= =f= J TN =111 ¥]
s o

-
il
o
"

o

o

o

o

o

o

o
¥
¥
¥
¥

e
¥
¥

o - list threads running summary
Command :© o

Procezzing = o (2
Unrecognized command . displavying status

Status - @
Ready Bits : B8AA16208

System Timer Thread Suspended

Q% Main Ready to run

Thread Monitor Suspended

Metwork Startup Waiting on Delay
CTC_BF_18063261 YWaiting on Event Flag
Command Processzor Ready to »un

GDE thread Suspended

Analog Input Scanner Waiting on Delawy
CIC_BF_10863261 Waiting on TCP-IP

UDPF Peer to Peer RA Waiting on TCPAIP
TCP Modbus Slave Suspended

UDP Peer to Peer TH Waiting on Queue
UDP Binary Protocol RE YWaiting on TCPAIP
TCP Binary Server Suspended

SHTP Client Waiting on Delay

CTServer Broadcast RA Waiting on TCPAIP
FTP Server Suspended

TELHET Server Suspended

Web Thread Suspended

UHUSED Suspended

o m - list mutexs and what is pending

Command = o m

Processing = o <m>
Total Mutexes 33
Mutex ‘Malloc Mutex' Id : 4d555445%, Pending tasks @
Ouner = Mone
Mutex ‘Local printf Mutex' Id : 44555445, Pending tasks @
Ouner = Mone
Mutex ‘Resource Filter Mutex' Id : 44555445, Pending tasks @
Ouner = Mone
Mutex ‘Quickstep Safe’ Id : 4d555445%, Pending tasks @
Ouner = Mone
Mutex ‘Step Atomicity' Id : 4d55544%, Pending tasks @
Ouner = Mone
Mutex *CTC_BF_18863261*' Id : 44555445, Pending tasks 8
Ouner = Mone
Mutex *SPI Select’ Id : 4d555445%, Pending tasks @
Ouner = Mone
Mutex ‘Parse Binary' Id : 4d555445%, Pending tasks @
Ouner = Mone
Mutex ‘CommB General' Id : 4d55544%, Pending tasks @
Ouner = Mone
Mutex ‘Uolatile Register Put’ Id : 44555445, Pending tasks @
Ouner = Mone
Mutex ‘Uolatile Register Get' Id 44555445, Pending tasks @

o t - list threads and detailed information
Command = o t

Processzing = o (t2>
All Tasks =

Stack 62cadcB:62calhf,. 62caBbh4d

Short Stack Frame B

RE—-Ri4,. MACH.L, PR, SR
B62h15f8 BABABEAA1 B62caBB8B8 B62hiSac B62h57h4d B62h5668 B62Zcalid4 BARBAEAA
AERERAAA BGBAf23a BEABAAAL

Tazk ‘Q5 Main' at 62cBadd

Priority 12, Threszhold 12

Statuszs (A Ready to run

Count 38324 Delav 8

Stack 62cBbbc:62cl1b5h, 62claal

Long Stack Frame 1

RA-R14. MACH.L. PR. PC. SR
BP0BEER1 B62aa%48 B6B23170 B6E2bL2980 B6B4bfaB B62aa?lic 10801edBc DRBBOHAAA
B682318e 1001ePld 1001edBc DRRBOHOAA 1001ePBc DRBBOARZ OOBBDAZE B62cihB4d
H00000AA B604c322 B62cibBE Bo2cib2B

Net ? — network help
Command : net 7

Processing = net <72
I Cad» IP Address
M Cad> Subnet Maszk
G Cad? Gateway

H Cad? CTC Hode
H
o

Cad> HIC Address
Counters
Sockets Open
D Dizplay all
Command =

net - network state and information, IP, MAC...

Processing = net (2>

Unrecognized command ., displaving all
IP Address (c2835%61>, A12_PA48_.053.6897
Subnet Mask <ffffffo@>,. 255.255.255.888
Gateway (c2835ce?,. H12.8408.6853.204

CTC Hode B, UYorking A

HIC Address BAcB-ch??-8d494d4

Command =

dhcp - dhcp information
Command : dhcp

Processing = dhcp <2
Unrecognized command . Display status

DHCP Status
Wid ?3cB879278. State : Bound
= @12_0848_6853_6897
IPF = B12.640.653 .60608
Packet Pool : CIC_BF_18863261. Socket @ CIC_BF_18063261.
Lease 86408 24:00:08,. Renew 43200 12:88:868. Rebind 75680 21:860:0808
Timeout 43208 12:80:88, left —1

Current IP = 812.8408.685%3.897 SubMet = 255.255.255.808 Gateway = 912.0848.853.204

Ethernet Flags @A
Command :

Command = m 7

Processing - m (72>
Enter optional command, address and length
Commands are D — Display Data (default>
T — Test RAM
Eraze Flash
Get Flash Block Size
M — Display Hap
Add a D or d for decimal display.
Add a W or w for word access display.
Command :

E
N

m Oxaddress - dump memory starting at Ox##HH#H#### in hex

All of these commands are the same as used when using telnet and run the 'enable
debug' command. Also only one instance may run at a time on the PC.

5300 ‘C’ User Programming Guide

Control Technology Corporation
Document 951-530004-0001 02/07

Blank

48

5300 ‘C’ User Programming Guide

UserApp.c Sample Program

This section includes sample code which is distributed within the ‘C’
Development kit for the controller. This program introduces the
concepts of register filters, serial and network communications.

/**/

/* MODULE: userApp.c */
/* */
/* MODULE DESCRIPTION: */
/* */
/* This module is provided as an example for accessing the Quickstep OS */
/* from a C programming environment. The supplied main() example is for */
/* reference only and must exist somewhere in the users code and it must */
/* return control in a timely fashion. */
/* */
/* REVISION HISTORY: */
/* */

/**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

// Always include CoreFunc.h in any module that will access the Quickstep OS
#include "CoreFunc.h"

#define ESC "\x1B"

// Function prototype
int sampleFilter (void *handle, FILTERPARAMS *params, STDVAL value, RETVAL *status);

/**/

/* */
/* FUNCTION RELEASE */
/* */
/* main PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
Vad This function is the main input function called after a User */
/* C file is loaded into memory for execution. Any initialization */
/* required should be done and control returned. */
/* */
/* MAKE SURE TO RETURN CONTROL AND DON"T TAKE LONG!!! IF CALLED BY */
/* A QUICKSTEP RUNNING A SCRIPT, YOU MAY HAVE TO INVOKE A WATCHDOG */
Control Technology Corporation 49

Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

Vad RESET FUNCTION IF SPEND MORE THAN 40 MS HERE (fireWatchdog()) */
/* */
/* INPUT */
/* */
/* none */
/* */
/* OUTPUT */
/* */
Vad 0 = Initialization successful, allow User functions to execute */
Vad non—-zero = Init failed, do not run User functions */
/* */
/* CALLS */
/* - __main() call must be madie prior to any other code */
/* - user define initialization routines, as required */
/* */
/* CALLED BY */
/* */
/* C User Function file loader (Quickstep 0S) */
/* */
/* RELEASE HISTORY */
/* */
Vad DATE NAME DESCRIPTION */
/* */
/* */

/**/

int _ main();

int main (void)

{
RESOURCE_INFO resource;
void *handle;

if (_main() < 0)
{
return -1; // Can't find link to main function table so must
// return control and report error

}

// Log Event Code to signal we made it here successfully. This 1is not
// required but placed here as test code. Note all user Events should
// start at 50000, below that is reserved for Quickstep OS

logEvent (EVENT_DEBUG, 50000);

// Send a message to the UDP Debugger screen as though it was our STDIO output
printf ("Hello World.\r\n");

// Lets install a filter function as a sample
resource.type = RESOURCE_REGISTER;

resource.start = 2; // lets filter register 2
resource.end = 6; // no range, only 2 for now
resource.mode = RESOURCE_READ; // read operation only, if write too would

RESOURCE_WRITE
// Now add the filter...
handle = addResourceFilter (&resource, sampleFilter);

// 1f error occurs return non-zero and User functions will not run...
return (0) ;
}

// User Filter Example, register 2 to 6 will be divided by 2 when written

int sampleFilter (void *handle, FILTERPARAMS *params, STDVAL value, RETVAL *status)

{
// This sample filter simply processes a read or write operation on a register
switch (params—=>mode)

{
case RESOURCE_READ:

!

// Someone 1is attempting to read the register, actual value in in "value"

// Let's divide it by 2 just for test purposes
if (value) // don't divide by O0...

value = value/2;
break;

Control Technology Corporation
Document 951-530004-0001 02/07

50

5300 ‘C’ User Programming Guide

}

// User taskLoop Function Example invoked on main Quickstep loop after all steps execute

// NOTE: THIS ONLY RUNS WHEN CONTROLLER IS NOT FAULTED!!!
// EVEN IF QUICKSET IS NOT USED NEED A SINGLE INSTRUCTION QUICKSTEP PROGRAM IN THE
CONTROLLER!

case RESOURCE_WRITE:

// Let's not do anything on a write operation, we could have added filter

// so only reads called this funtion also but this is for future reference

// on how to process a write
break;
}
// Return new or same value to use
return value;

// userServiceLoopHook is called when faulted and also after every task step
// you may use the SYSMODE state to determine when taskLoop is not running, possibly only

running

// certain tasks when in FAULT mode, like communications. Note that if faulted power 1is
// is turned off on the outputs (VBIAS).
int taskLoop (SYSMODE state)

{

void testSerial (int);

void testNetwork () ;

// Note spending more than 40 ms in this loop will cause a watchdog fault! Not
// including time may be pre-empted by interrupts and communication threads

// fireWatchdog(); will need to be called to reset timer if do.

// (Watchdog reset upon entry and exit of this function, automatically)
testSerial (COM1) ;

testNetwork () ;

return 0; // always return 0, not used but may be some day

}

// Serial port test function

// commPort = COMI1 or COM2 for hardware serial ports
// Register 1 = transmit status/results
// Register 2 = loop counter

void testSerial (int commPort)

{

static int initialized = 0;

static int 1 = 1;

static int txcnt = 1;

static int errcnt = 0;

RETVAL r;

UINT8 szMsgl[3];

UINT16 wSize;

char buf[70];

if (!initialized)
{
initialized = 1;
// first must disable parsing so get raw data on receiver

szMsg[0] = COMMCMD_RQST_PARSING;
szMsg[1l] = 0; /*dummy for port value*/
szMsg[2] = 0;

wSize = 3;

commGenericCmd (commPort, szMsg, &wSize);
}

// Invoked here on each loop of quickstep execution
// Check to see if transmitter is ready

szMsg[0] = COMMCMD_RQST_QUERY;
szMsg[1l] = 0; /*dummy for port value*/
wSize = 2;

commGenericCmd (commPort, szMsg, &wSize);

if (szMsg[0] == COMMCMD_RSPN_OK)

{
// Serial port ready
sprintf (buf, "Control Technology Serial Port Test #%d, errors -

%$d.\r\n", txcnt,errcnt) ;
r = commSendMsg (commPort, buf,strlen (buf));

Control Technology Corporation
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

if (r !'= SUCCESS)

{
// error occured, r = 35 ERROR_NO_COMM_PORT
errcnt++;
regWrite (1, r);

else
{
txcnt++;
regWrite (1, 0);
}
}
else if (szMsg[0] == COMMCMD_RSPN_BUSY)

// port is busy
regWrite (1, 999);

// unknown response
regWrite (1, 888);
}
// set loop counter, using register 18
regWrite (2, i++);
}

/******************* BELOW FOR NETWORK OPERATION **********************/

USERCONNECTION user; // Structure to define network connections
// must not be stack variable and must be passed
// to Open, Send, and Close routines

// Maximum number of packets that can be queued
#define MAX_USER_PACKETS_QUEUED 5
#define MAX_USER_MESSAGE_SIZE 400 // set this to largest message size
// Packet structure for queue
typedef struct
{
unsigned char packet [MAX_USER_MESSAGE_SIZE+1];
int length;
unsigned long hostIp;
int hostPort;
} NETWORKPACKET;

// When counts -1 there are no packets to process, when same full
int incount; // storage count

int outcount; // retrieval count

NETWORKPACKET packets[MAX_USER_PACKETS_QUEUED] ;

TX_MUTEX packetMutex; // Need to mutex joint resources with main Quickstep thread

// Network Function test program to create a thread to monitor UDP port 7000
// also sends a sample message upon connection

void testNetwork ()

{

static int state = 0;

void networkStateChange (void *ptr);

if (state == 0)

{
// first time called therefore open a UDP port, 7000
// clear everything out
memset ((void *) &user, 0, sizeof (USERCONNECTION)) ;

user.srcPort = 7000;
user.type = NETWORK_TYPE_UDP;
incount = outcount = -1; // set to empty

// define the function to be invoked by network thread when change of state

// Note that mutexes must be used within this function if common resources

// accessed

user.StateCallback = networkStateChange;

printf ("attempt open.\r\n");

// Create a mutex since this thread and network callback are different threads

Control Technology Corporation 52
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

_txe_mutex_create (&packetMutex, "USER C UDP", TX_INHERIT);
if (commNetworkOpen ((USERCONNECTION *)s&user))
{
// error occurred, cleanup
printf ("Network Open failed\r\n");
_txe_mutex_delete (&¢packetMutex) ;
return;
}
printf ("open occurred.\r\n");
// Network thread spawned so now await callback with change of state
// saying connected. Can also watch our Control Block.
state++;
}
else if (state == 1)
{
// await Network thread to be operational
if (user.state == USER_CONNECTED)
{
printf ("got connection.\r\n");
// we are now ready to run
state++;
}
else if (user.state == USER_DISCONNECTED)
{
// connection failed, abort, already closed
state—-—;
}
else if (user.state == USER_CONNECTING)
{
// thread still starting up

}
else if (state == 2)
{
// lets idle since running, wait for Network data to process
if (outcount == -1)
{
// nothing to do
return;
}

// make sure it is null terminated

packets[outcount] .packet [packets[outcount].length] = 0x00;
// get next buffer to use, do something
printf ("$s\r\n", packets[outcount] .packet); // this sent to UDPterm last heard

// from on port 1202

// Test sending a response to the packet
user.packetBuf = "UDP Packet reception Successful";
user.length = strlen (user.packetBuf);

// set response destination to originator of packet
user.destIp = packets[outcount].hostIp;
user.destPort = packets[outcount].hostPort;
commNetworkSend ((USERCONNECTION *)&user) ;

// must set mutex when bump counter but not needed to process data
_txe_mutex_get ((TX_MUTEX *)&packetMutex, TX_WAIT_FOREVER) ;

outcount++;
if (outcount == MAX_USER_PACKETS_QUEUED)
{
outcount = 0;
}
if (outcount == incount)

{
// we are empty now
outcount = incount = -1;
}

// unlock resource

N
W

Control Technology Corporation
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

_txe_mutex_put ((TX_MUTEX *)&packetMutex) ;

}

// Callback function to process RX thread state change
void networkStateChange (void *ptr)
{

// It is left to the user to modify the below code for their application
USERCONNECTION *user = (USERCONNECTION *)ptr;

switch (user—->state)
{
case USER_CONNECTED:
// OK to send now
printf ("Got USER_CONNECTED\r\n");
break;

case USER_DISCONNECTED:
// this connection is has been broken
printf ("Got USER_DISCONNECTED\r\n");
break;

case USER_DATA_AVAILABLE:
// offload data packet, do not access serial ports except on may
// Quickstep loop

// the routines is not thread safe
printf ("Got USER_DATA_AVAILABLE, length %d\r\n",user->length);
// move data to buffers
_txe_mutex_get ((TX_MUTEX *)&packetMutex, TX_WAIT_FOREVER) ;
if (incount == -1)
{
// this is the first packet
outcount = 0;
incount = 0;
}
else if (incount == outcount)
{
_txe_mutex_put ((TX_MUTEX *)&packetMutex) ;
return; // ignore packet, buffers full
}
// Move the packet data into our local queues for processing
memcpy (packets[incount] .packet, user—->packetBuf,user->length);
packets[incount].length = user—>length;
packets[incount] .hostIp = user—->destlIp;
packets[incount] .hostPort = user—->destPort;

incount++;
if (incount == MAX_USER_PACKETS_QUEUED)
{

// wrap it

incount = 0;

}
_txe_mutex_put ((TX_MUTEX *)&packetMutex) ;
break;

default:
printf ("Got undefined statel\r\n");
return;

}

// Function called when program is being unloaded, possibly new being loaded
void userCleanUp ()

{

// must return any allocated memory to system or close network conn.if open so threads stop
if (user.state == USER_CONNECTED)

{
commNetworkClose ((USERCONNECTION *)guser) ;

Control Technology Corporation 54
Document 951-530004-0001 02/07

5300 ‘C’ User Programming Guide

}
_txe_mutex_delete ((TX_MUTEX *)g&packetMutex) ;

Control Technology Corporation
Document 951-530004-0001 02/07

55

