
Performance Motion Devices, Inc.
80 Central Street

Boxborough, MA 01719

Revision 2.4, October 2008

MC73110
Advanced 3-Phase Motor Control IC

Product Manual

MC73110 Product Manual

ii MC73110 Product Manual

NOTICE
This document contains proprietary and confidential information of Performance Motion Devices, Inc., and is pro-
tected by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied,
or duplicated in any form, in whole or in part, without the express written permission of PMD.

The information contained in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express
written permission of PMD.

Copyright 1998–2008 by Performance Motion Devices, Inc.

Magellan, ION, Magellan/ION, Pro-Motion, Pro-Motor, C-Motion, and VB-Motion are trademarks of Perfor-
mance Motion Devices, Inc.

MC73110 Product Manual iii

Warranty
PMD warrants performance of its products to the specifications applicable at the time of sale in accordance with
PMD’s standard warranty. Testing and other quality control techniques are utilized to the extent PMD deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Performance Motion Devices, Inc. (PMD) reserves the right to make changes to its products or to discontinue any
product or service without notice, and advises customers to obtain the latest version of relevant information to verify,
before placing orders, that information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty,
patent infringement, and limitation of liability.

Safety Notice
Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe
property or environmental damage. Products are not designed, authorized, or warranted to be suitable for use in life
support devices or systems or other critical applications. Inclusion of PMD products in such applications is under-
stood to be fully at the customer's risk.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must
be provided by the customer to minimize inherent procedural hazards.

Disclaimer
PMD assumes no liability for applications assistance or customer product design. PMD does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other in-
tellectual property right of PMD covering or relating to any combination, machine, or process in which such products
or services might be or are used. PMD’s publication of information regarding any third party’s products or services
does not constitute PMD’s approval, warranty or endorsement thereof.

Related Documents
MC73110 Advanced 3-Phase Motor Control IC Developer’s Kit Manual

This document guides you through installation and operation of the MC73110 Developer’s Kit.
It describes the developer’s kit card and software, and provides complete schematics for the card.
iv MC73110 Product Manual

Table of Contents
Chapter 1. Product Overview . 9

Chapter 2. Specifications . 11
2.1 Configurations, Parameters, and Performance . 11
2.2 Physical Characteristics and Mounting Dimensions . 12

Chapter 3. Electrical Specifications. 13
3.1 Absolute Maximum Ratings. 13
3.2 Recommended Operating Conditions . 13
3.3 AC Characteristics . 14
3.4 Timing Diagrams . 15
3.5 Pin Descriptions . 17
3.6 Phase Lock Loop (PLL) . 20

Chapter 4. Theory of Operations . 21
4.1 Functional Overview. 21
4.2 Internal Block Diagram . 23
4.3 Connection Summary . 23
4.4 Control Loop Overview . 24
4.5 Motor Output and Signal Generation. 27
4.6 Current Loop . 30
4.7 Commutation . 32
4.8 Field Oriented Control (FOC) . 35
4.9 Velocity Loop . 36
4.10 Velocity Integrator. 40
4.11 Profile Generation . 42
4.12 Loop Rate . 43
4.13 Status Words . 44
4.14 Programmable Conditions . 47
4.15 Temperature Sensor . 50
4.16 Bus Voltage Sensor . 51
4.17 Serial Port . 51
4.18 Incremental Encoder Input . 56
4.19 Serial EEPROM. 57
4.20 Synchronous Serial Input (SPI Port). 59
4.21 Analog Signal Processing . 60
4.22 GetLoop Commands and Variables. 62

Chapter 5. Instruction Reference. 67
5.1 How to Use This Reference. 67
MC73110 Product Manual v

This page intentionally left blank.
vi MC73110 Product Manual

List of Figures
2-1 MC73110 physical dimensions .12
3-1 MC73110 Clock timing diagram .15
3-2 MC73110 Quad encoder timing diagram .15
3-3 MC73110 Reset timing diagram .16
3-4 MC73110 SPI timing diagram .16
3-5 MC73110 chip pin layout and descriptions .17
3-6 PLL circuitry design .20
4-1 MC73110 internal block diagram .23
4-2 With an external motion controller .24
4-3 As a complete intelligent motion controller .24
4-4 Control loop flow .25
4-5 Configuration for a torque-mode amplifier .26
4-6 Configuration for a velocity-mode amplifier .27
4-7 Intelligent motion controller configuration .27
4-8 PWM waveforms and currents .28
4-9 Six-signal mode with dead time delay .29
4-10 Motor current sensing .30
4-11 Sinusoidal commutation .32
4-12 Motor command phasing vs. Hall sensors .34
4-13 FOC current control flow .36
4-14 Velocity feedback and scaling .37
4-15 Velocity integrator source select .41
4-16 Typical velocity profile .43
4-17 Typical data frame format .55
4-18 QuadA, QuadB, and Index signals .57
4-19 The current loop .62
4-20 The velocity loop .63
4-21 The velocity integrator loop .65
MC73110 Product Manual vii

This page intentionally left blank.
viii MC73110 Product Manual

1
1.Product Overview
The MC73110 Motor Control IC is a single-chip, single-axis device ideal for use in intelligent three-phase brushless
DC motor amplifiers. It provides sophisticated programmable digital current control with direct analog input of
feedback signals. It can be operated in voltage, torque, or velocity modes. The MC73110 also supports standalone
operation for use with PMD’s motion processors, other off-the-shelf servo controllers, or via a serial port.

Navigator/Pilot-family Motion Processors provide programmable chip-based positioning control for DC brush,
brushless DC, microstepping, and pulse & direction motors. They are available in 1-, 2-, and 4-axis configurations, and
in both single-chip and dual-IC chipset configurations.

Magellan Motion Processors are state-of-the-art programmable chip-based positioning controllers for DC brush,
brushless DC, microstepping, and pulse & direction motors. They are similar to the Navigator Motion Processors, but
provide increased capabilities including faster loop rate, CANBus communications, software-selectable motor type,
and direct SPI bus output for serial DACs. They are available in 1-, 2-, 3-, and 4-axis configurations, and in both single-
chip and dual-IC chipset configurations.

Magellan PCI and PC/104-bus motion cards are high performance general purpose motion cards for controlling
DC brush, brushless DC, microstepping, and pulse & direction motors. Utilizing PMD’s Magellan Motion Processors,
these products are available in 1-, 2-, 3-, and 4-axis configurations and have advanced features such as 16-bit D/A
analog output, and on-board high-speed performance tracing.

MC73110
Motor
Control IC

Navigator/
Pilot Magellan

Motion
Cards

ION
Digital Drive

Number of axes 1 1, 2, 4 1, 2, 3, 4 1, 2, 3, 4 1
Package 64-pin TQFP 132-pin PQFP

100-pin PQFP
144-pin LQFP
100-pin LQFP

PCI
PC/104

Fully enclosed module

Voltage 3.3V 5V 3.3V 3V 12–56V
Function Velocity control

Torque control
Commutation
Encoder input

Position control
Encoder input
Profile generation
Commutation

Position control
Encoder input
Profile generation
Commutation
Network
 communications
Multi-motor

Position control
Encoder input
Profile generation
Commutation
Signal conditioning
Analog output
Trace buffer

Position control
Profile generation
Commutaion
Network
 communications
Field oriented control
Torque/current control
Trace buffer
MOSFET amplifier

Motor types Brushless DC DC brush
Brushless DC
Microstepping
Pulse & direction

DC brush
Brushless DC
Microstepping
Pulse & direction

DC brush
Brushless DC
Microstepping
Pulse & direction

DC brush
Brushless DC
Microstepping

Communication

Standalone
Serial

Parallel
Serial point-to-
point
Serial multi-drop

Parallel
Serial point-to-
point
Serial multi-drop
CANbus

PCI, PC104 CANbus
RS232/485

Loop rate 20 kHz 100–150 µSec/
axis

50–75 µSec/axis 50–75 µSec/axis 20kHz
MC73110 Product Manual 9

Product Overview1
ION Digital Drives are compact, fully enclosed modules that provide high performance motion control, network
connectivity, and power amplification for DC brush, brushless DC or step motors. Using advanced MOSFETs and
surface mount technology, ION drives provide very high power density in a rugged, flexible form factor. They
perform profile generation, servo compensation, stall detection, field oriented control, digital torque control and many
other motion control functions. These single-axis drives are based on the Magellan Motion Processor and provide
CANbus or serial communications.
10 MC73110 Product Manual

2
2.Specifications

In This Chapter
X Configurations, Parameters, and Performance
X Physical Characteristics and Mounting Dimensions

2.1 Configurations, Parameters, and
Performance

Available configurations 1 axis (MC73110)
Motors supported 3-phase brushless DC
Motor output modes 6-signal high/low digital outputs with dead time protection

3-signal digital outputs
Commutation modes 6-step (with Hall sensors)

Sinusoidal (with Hall sensors and quadrature encoder input)
FOC (with Hall sensors or Hall sensors and quadrature encoder input)

Current loop rate 20 kHz (19.53 kHz)
Commutation rate 20 kHz (19.53 kHz)
Velocity loop rate 10 kHz (9.766 kHz)
Operating modes Standalone using serial EEPROM boot or on-board Flash for configuration upload,

serial-command-mode (commands sent by host processor)
Serial communication Point-to-point asynchronous
modes Multi-drop asynchronous
Serial baud rate range 1,200 to 460,800
Programmable profile
parameters

Velocity (32-bit resolution)
Acceleration (32-bit resolution)

Current feedback Two analog signals (10-bit A/D internal resolution)
Velocity feedback One analog tachometer signal (10-bit A/D internal resolution), quadrature encoder, or

Halls
Velocity/torque/voltage From analog signal (10-bit A/D internal resolution)
command options From digital SPI datastream (16-bit resolution)

From serial port (live commands from host processor)
Bus voltage monitor From analog signal(10-bit A/D internal resolution)
Temp sensor I/O I2C bus
Serial EEPROM I/O I2C bus
SPI input format 16-bit binary-encoded word
SPI input rate 10 MHz (1.6 μsec total transmission time)
Input signals EStop

HallA –Hall C
PWMOutputDisable

Output signals AmplifierDisable
Quadrature input signals A, B, Index
Max quadrature input rate 10 MCounts/sec
PWM resolution 10 bits @ 20 kHz (19.53 kHz)

9 bits @ 40 kHz (39.06 kHz)
MC73110 Product Manual 11

Specifications2
2.2 Physical Characteristics and
Mounting Dimensions

All dimensions are in millimeters.

Figure 2-1:
MC73110
physical
dimensions

PWM output method Symmetric 3-phase
Internal A to D resolution 10-bit
12 MC73110 Product Manual

3
3.Electrical Specifications

In This Chapter
X Absolute Maximum Ratings
X Recommended Operating Conditions
X AC Characteristics
X Timing Diagrams
X Pin Descriptions
X Phase Lock Loop

3.1 Absolute Maximum Ratings

3.2 Recommended Operating
Conditions

(Vcc and Ta per operating ratings, either standard or extended temperature, Fclk = 10.0 MHz)

Parameter Rating
Supply Voltage Limits (Vcc, PLLVcc) –0.3V to +4.6V

Vccp Range –0.3V to 5.5V

Input/Output Voltage (Vi) –0.3V to +4.6V

Operating Temperature: extended (Ta) –40°C to 125°C
Package Thermal Impedance, 0 JA (Junction-to-ambient) 42° C/W

Free-air Temperature Range: Standard (Ta) –40°C to 85°C

Free-air Temperature Range: Extended (Ta) –40°C to 125°C

Junction Temperature Range: (Tj) –40°C to 150°C

Storage Temperature (Ts) –65°C to 150°C

Symbol Parameter Minimum Maximum Conditions
Vcc Supply Voltage 3.00V 3.6V

Vccp Vccp Supply Voltage 4.75V 5.25V

Idd Supply Current 120 mA all I/O pins floating

Fclk Clock Frequency 10.0 MHz Nominal
MC73110 Product Manual 13

Electrical Specifications3
3.2.1 Input Voltages

3.2.2 Output Voltages

3.2.3 Currents and Capacitance

3.2.4 Analog Input

3.3 AC Characteristics

See timing diagrams on the opposite page for Tn numbers. The symbol “~” indicates active low signal.

Symbol Parameter Minimum Maximum Conditions
Vih Logic 1 Input Voltage 2.0V Vcc + 0.3V

Vil Logic 0 Input Voltage 0.8V

Symbol Parameter Minimum Maximum Conditions
Voh Logic 1 Output Voltage 2.4V Vcc Io = –2 mA

Vol Logic 0 Output Voltage 0.4V Io = 2 mA

Symbol Parameter Minimum Maximum Conditions
Iin Input Current –30 µA 2 µA Vin = 0 or Vcc

Iout Tri-state Output Leakage Current –2 µA 2 µA Vin = 0 or Vcc

Cio Input/Output Capacitance 2/3 pF typical

Ivccp Vccp Input Current 15 mA

Symbol Parameter Minimum Maximum Conditions
AnalogVcc Analog Supply Voltage 3.0V 3.6V The difference between

AnalogVcc and Vcc should
be less than 0.3V.

Ia Analog Supply Current 22 mA

Irefhi Vrefhi Input Current 1.5 mA

Zai Analog Input Source Impedance 700 Ohms

Cai Analog Input Capacitance 30 pF typical

Ezo Zero-offset Error ±2 LSB typical

Ednl Differential Nonlinearity Error ±2 LSB

Difference Between the Step Width
and the Ideal Value

Einl Integral Nonlinearity Error ±2 LSB

Maximum Deviation from the Best
Straight Line through the A/D
Transfer Characteristics,
Excluding the Quantization Error

Timing interval Tn Minimum Maximum
Clock frequency (Fclk) 4 MHz 10 MHza
14 MC73110 Product Manual

Electrical Specifications 3
3.4 Timing Diagrams

Figure 3-1:
MC73110
Clock timing
diagram

Figure 3-2:
MC73110 Quad
encoder timing
diagram

Clock period b T2 100 nsec 250 nsec

Encoder pulse width T3 150 nsec
Dwell time per state T4 75 nsec
Index setup and hold T5 0 nsec
Reset low pulse width T6 1.0 µsec
Device ready/outputs initialized T7 1 µsec
Clock High T8 40 nsec
Data Hold T9 50 nsec
Data Setup T10 0 nsec
Clock Rise/Fall T11 10 nsec
Clock Period T12 100 nsec

a. Performance figures and timing information valid at Fclk = 10.0 MHz only. For timing infor-
mation and performance parameters at Fclk < 10.0 MHz, contact PMD.

b. The clock low/high split has an allowable range of 40–60%.

Timing interval Tn Minimum Maximum

T1

ClockIn

T1 T2

T3 T3

T4 T4

Quad A

Quad B
MC73110 Product Manual 15

Electrical Specifications3
Figure 3-3:
MC73110
Reset timing
diagram

Figure 3-4:
MC73110 SPI
timing diagram

Vcc

ClockIn

~RESET

T6 T7

16 MC73110 Product Manual

Electrical Specifications 3
3.5 Pin Descriptions

Figure 3-5:
MC73110 chip
pin layout and
descriptions

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
Hall3

PWMCLow
Gnd
Vcc

PWMCHigh/PWMC
PWMBLow

Gnd
Vcc

PWMBHigh/PWMB
PWMALow

PWMAHigh/PWMA
Vccp

Reserved/unused
Reserved/unused

I2CData
I2CClk

Reserved/unused
Reserved/unused
Reserved/unused
Reserved/unused
~Reset
Vcc
Gnd
Reserved/unused
ClockIn
AmplifierDisable
AnalogGnd
AnalogVcc
AnalogRefHigh
AnalogRefLo
CurrentA
CurrentB

C
om

m
un

ic
at

io
nM

od
e

~I
nd

ex
Q

ua
dB

Q
ua

dA G
nd V
cc

R
es

er
ve

d/
un

us
ed

R
es

er
ve

d/
un

us
ed

G
nd V
cc

A
na

lo
gG

nd
A

na
lo

gG
nd

Bu
sV

ol
ta

ge
A

na
lo

gG
nd

A
na

lo
gC

m
d

Ta
ch

om
et

er

R
es

er
ve

d/
un

us
ed

D
ig

ita
lC

m
dC

lk
Sr

lE
na

bl
e

D
ig

ita
lC

m
dD

at
a

Sr
lR

cv
Sr

lX
m

t
~E

st
op

H
al

l2
H

al
l1

PL
LV

cc
O

sc
 fi

lte
r

2
O

sc
 fi

lte
r

1
~P

W
M

O
ut

pu
tD

is
ab

le
V

cc
G

nd
R

es
er

ve
d/

un
us

ed

MC73110
Advanced 3-Phase
Motor Control IC
MC73110 Product Manual 17

Electrical Specifications3
The functions of the MC73110’s pins are defined as follows:

Pin
Name

Pin
Number Direction Description

QuadA
QuadB

4
3

Input These digital signals provide the A and B quadrature input from the
QuadB incremental encoder. When the axis is moving in the positive
(forward) direction, signal A leads signal B by 90°. NOTE: Many
encoders require a pull-up resistor on these signals to
establish a proper high signal. Check your encoder’s electri-
cal specifications. If not used, these pins may be left uncon-
nected.

~Index 2 Input This digital signal provides the Index signal from the incremental
encoder. NOTE: Many encoders require a pullup resistor on
this signal to establish a proper high signal. Check your
encoder’s electrical specifications. If not used, this pin may
be left unconnected.

PWMAHigh/
PWMA
PWMALow
PWMBHigh/
PWMB
PWMBLow
PWMCHigh/
PWMC
PWMCLow

59
58
57
54
53
50

Output These digital signals provide the Pulse Width Modulated output for
each phase to the motor. In 6-signal mode, all 6 signals are used. In
3-signal mode, PWMAHigh, PWMBHigh, and PWMCHigh are used.
If not used, these pins may be left unconnected.

Hall1
Hall2
Hall3

40
41
49

Input These digital signals provide Hall sensor inputs.

~Estop 42 Input This digital signal provides an emergency stop signal that may be
used to stop motor output. Unless the default interpretation is
changed, an emergency stop condition occurs when this signal is
brought low. If not used, this pin may be left unconnected.

Tachometer 16 Input This analog signal provides optional analog feedback for the motor
velocity. After conditioning, this signal is commonly connected to
the motor’s tachometer. The allowed voltage range is AnalogRe-
fLow to AnalogRefHigh. If not used, this pin should be tied to
AnalogGND.

CurrentA
CurrentB

18
17

Input These analog signals provide the instantaneous current flowing
through coils A and B of the motor. These signals, after conditioning,
are commonly connected to the A&B motor coils through a drop-
ping resistor or Hall sensor. The allowed voltage range is AnalogRe-
fLow to AnalogRefHigh. If not used, this pin should be tied to
AnalogGND.

AnalogCmd 15 Input This analog signal provides a command value for either the desired
voltage, torque or velocity, depending on how the chip has been
programmed. The allowed voltage range is AnalogRefLow to
AnalogRefHigh. If not used, this pin should be tied to AnalogGND.

Bus Voltage 13 Input This analog signal provides the ability to monitor the Bus Voltage.
The allowed voltage range is AnalogRefLow to AnalogRefHigh. If not
used, this pin should be tied to AnalogGND.

Communication-
Mode

1 Input This digital signal should be tied low at all times through a 10K resis-
tor to the digital ground.

SrlEnable 46 Output This digital signal sets the serial port enable line. SerialEnable is
always high for the point-to-point communication mode, and is
strobed high during transmission for the multi-drop protocol.

I2CData 63 Bidirectional This digital signal and the I2CClk signal comprise an I2C bus used for
inputting amplifier temperature from an I2C compatible device, and/
or an I2C-compatible serial EEPROM device. If not used, these sig-
nals may be left unconnected.
18 MC73110 Product Manual

Electrical Specifications 3
I2CClk 64 Output This digital signal and the I2CData signal comprise an I2C bus used
for inputting amplifier temperature from an I2C compatible device,
and/or an I2C compatible serial EEPROM device. If not used, these
signals may be left unconnected.

DigitalCmdClk
DigitalCmdData

47
45

Input These digital signals encode a 16-bit digital command containing the
desired voltage, torque or velocity, depending on how the chip has
been programmed. These signals are encoded using an SPI word for-
mat, with one line providing clock information (DigitalCmdClk), and
the other providing data (DigitalCmdData). If not used, these signals
may remain unconnected.

SrlXmt 43 Output This digital signal transmits serial data to the asynchronous serial
port.

SrlRcv 44 Input This digital signal inputs serial data from the asynchronous serial
port. If not used, this signal may remain unconnected.

AmplifierDisable 23 Output This digital signal provides a general purpose output which can be
programmed for a variety of internal conditions of the chip. It is
most commonly used to control external amplifier circuitry in the
event that a condition such as overtemperature or a motion error
occurs. The sense of this signal is active high. That is, this signal is
normally low, and transitions high upon the occurrence of the pro-
grammed special event. NOTE: This signal must not be pulled
down. It should be either connected to a high-impedance
input or pulled up to 3.3V with a 10K resistor.

~PWMOutput-
Disable

36 Input This digital signal directly controls the PWM output circuitry. When
this signal is high the PWM output of the chip is enabled. When it is
low, PWM output is disabled, and all PWM output signals are tri-
stated. If not used, this signal may remain unconnected.

AnalogRefHigh
AnalogRefLow

20
19

Input These analog signals provide the high voltage reference and the low
voltage reference value used to define the allowed range of voltage
for the pins Velocity, CurrentA, CurrentB and AnalogCmd. The rec-
ommended value of AnalogRefHigh is between 2.0V and AnalogVcc.
The recommended value of AnalogRefLow is AnalogGND. The volt-
age change on both pins shall be smaller than half of the LSB of the
target resolution.

AnalogVcc 21 Input This signal provides power to the analog portion of the chip’s cir-
cuitry. It should be connected to a 3.3V supply. It is recommended
that this (analog) power supply be isolated from digital power supply
Vcc in order to ensure noise immunity and meet the specified A/D
performance. The recommended operating range is from 3.0V to
3.6V, with a nominal value of 3.3V. The difference between
AnalogVcc and Vcc should not exceed 0.3V.

AnalogGND 11, 12, 14, 22 Input These signals provide the return for the analog portion of the chip’s
circuitry. It should be connected to the analog return. It is recom-
mended that this (analog) power return be isolated from digital
power return in order to ensure noise immunity, and to meet the
specified A/D performance.

ClockIn 24 Input This is the master clock signal for the chip.
It is nominally driven at 10 MHz.

~Reset 28 Input This digital signal is used to reset the chip. When brought low, this
pin resets the chip to its initial conditions. This pin must be high for
normal operation. Refer to Figure 3-3 on page 16 for timing require-
ments.

Vcc 6, 10, 27, 35,
52, 56

— These signals provide power to the digital portion of the chip’s
circuitry. They should be connected to a 3.3V supply.

GND 5, 9, 26, 34,
51, 55

— These signals provide the return for the digital portion of the chip’s
circuitry. They should be connected to the digital return.

Pin
Name

Pin
Number Direction Description
MC73110 Product Manual 19

Electrical Specifications3
3.6 Phase Lock Loop (PLL)

The circuit in Figure 3-6 shows the recommended configuration and suggested values for the filter that must be
connected to the OscFilter1 and OscFilter2 pins of the chip. The resistor tolerance is ±5%, and the capacitor tolerance
is ±20%. Unpolarized capacitors must be used.

Figure 3-6:
PLL circuitry
design

Vccp 60 — This signal provides 5V to the internal Flash programming circuitry
of the chip. If it is desired that the chips’ startup configuration be
stored in the chip’s internal Flash memory, 5V must be provided at
this pin. Otherwise, this pin must be connected to the digital return.

— (Reserved/
unused)

7, 8, 25, 29,
30, 31, 32,
33, 48, 61, 62

— These pins should remain unconnected.

Osc filter1
Osc filter2

37
38

—
—

These signals form a PLL (phase lock loop) circuit. See
 Section 3.6, “Phase Lock Loop (PLL),” on page 20 for more infor-
mation.

PLLVcc 39 — This signal provides the Vcc for the phase locked loop circuit. It
should be connected to a 3.3V supply.

Pin
Name

Pin
Number Direction Description
20 MC73110 Product Manual

4
4.Theory of Operations

In This Chapter
X Functional Overview
X Internal Block Diagram
X Connection Summary
X Control Loop Overview
X Motor Output and Signal Generation
X Current Loop
X Commutation
X Field Oriented Control (FOC)
X Velocity Loop
X Velocity Integrator
X Profile Generation
X Loop Rate
X Status Words
X Programmable Conditions
X Temperature Sensor
X Bus Voltage Sensor
X Serial Port
X Incremental Encoder Input
X Serial EEPROM
X Synchronous Serial Input (SPI Port)
X Analog Signal Processing
X GetLoop Commands and Variables

4.1 Functional Overview

The MC73110 Motor Control IC is a single-axis device for velocity, torque, or voltage-mode control of three-phase
brushless DC motors. It can perform a number of functions including three-phase PWM signal generation,
commutation, current loop, velocity loop, profile generation, Hall sensor input, quadrature encoder input, emergency
stop processing, serial port command I/O, synchronous serial SPI data input, direct analog signal input, I2C
temperature sensor input, and automatic configuration upload via serial EEPROM.

At power-up or reset, the MC73110 checks for the presence of a serial EEPROM at the I2C interface. If a serial
EEPROM is present, the stored configuration commands are read into the chip, providing parameter information that
will be used during operation. See Section 4.19, “Serial EEPROM,” on page 57 for more information on serial
EEPROM processing. Alternatively, configuration information may be stored in the MC73110’s Flash memory. If no
initial configuration is stored in Flash or is provided by serial EEPROM, then default values are used, and information
will then be sent by serial port commands from a host device such as a microprocessor or PC. See Section 4.17, “Serial
Port,” on page 51 for more information on serial port command processing. Depending on how the control loop has
MC73110 Product Manual 21

Theory of Operations4
been configured, an external analog signal may serve as the velocity or torque set point values. Alternatively, a
synchronous serial (SPI) data stream may also be used for this command value, or the internal profile generator can
be used.

Current loop control is performed via direct input of two analog signals representing the instantaneous current
through the A and B motor coils. These signals are typically derived from external dropping resistors or Hall sensors
at the amplifier circuitry. This analog current information is then combined with the desired current for each phase to
generate symmetric 6-signal or 3-signal PWM signals. See Section 4.5, “Motor Output and Signal Generation,” on
page 27 for more information on motor output.

To create a complete motion controller, the MC73110 is connected to three half-bridge amplifiers, typically MOSFET
or IGBT-based. A programmable dead time function ensures that adequate off-time is provided during state switching
of each motor coil.

A number of safety features are incorporated into the MC73110 including direct Estop (emergency stop) signal input,
PWM output disable, and an amplifier disable output signal which can be used to enable and disable the external
amplifier circuitry. See Section 4.14, “Programmable Conditions,” on page 47 for more information on emergency
stop and related functions.
22 MC73110 Product Manual

Theory of Operations 4
4.2 Internal Block Diagram

Figure 4-1:
MC73110
internal block
diagram

4.3 Connection Summary

The MC73110 can be used in one of two connection modes: either as a dedicated motion controller used in
conjunction with an external controller such as a PMD positioning motion processor or motion control card, or as a
complete intelligent motion controller driven by serial port commands. This is illustrated in Figure 4-2 on page 24 and
Figure 4-2 on page 24.

When using the MC73110 in conjunction with an external motion controller, a continuous torque or velocity
command in either analog or 16-bit SPI format is provided by the external motion controller. The MC73110 provides
current control, commutation, and velocity loop functions to control the motor per the command provided by the
external controller. In this connection configuration, operational information such as gain factors and other values

Command
processor

SCI

Flash user
configuration

storage

A/D
10-bit

A/D
10-bit

A/D
10-bit

SPI 16-bit

Motor output module
(3- or 6-signal output)

Digital current
 loop module

Commutation
module

P
ha

se
A

P
ha

se
B

P
ha

se
C

Ph
as

eA

Ph
as

eB

Velocity
loop

Velocity
integrator

Profile
generator

Motor command

QuadA
QuadB
Index

Hall 1 - 3

Reset

Estop

Tachometer

AnalogCmd

DigitalCmdData
DigitalCmdClk

CurrentA
CurrentB

SrlEnable
SrlXmt
SrlRcv

Serial
EEPROM
I2C Data
I2C Clk

3-signal
PWM 50/50

output

6-signal
output with
dead time

Amplifier
disable

Position/Velocity
feedback and

commutation angle

PWM output disable

Velocity
command

16-bit

Torque
Command

16-bit

FOC
Module

(optionally)

Hall-based
Velocity

estimation
MC73110 Product Manual 23

Theory of Operations4
required by the chip are stored in an external serial EEPROM which is automatically loaded upon reset, or in the Flash
memory of the MC73110.

Figure 4-2:
With an external
motion
controller

Using the MC73310 as a complete intelligent motion controller, a PC or host microprocessor sends profile commands
via the serial port, and the MC73110 responds by moving the axis along the desired profile, using the programmed
velocity and acceleration. In this application, gain factors and other values required by the chip are usually sent by the
host via the serial port after power-up.

Figure 4-3:
As a complete
intelligent
motion
controller

4.4 Control Loop Overview

This section summarizes the elements in the main control loop, beginning with those elements closest to the motor.
Figure 4-4 on page 25 shows the overall control loop flow of the MC73110.

External
motion

controller MC73110
Amplifier

Serial
EEPROM

Encoder
motor

Flash

Quad encoder
Current

SPI or
analog

command

External
motion

controller
MC73110 Amplifier Encoder

motor

Current

Serial

Quad encoder
24 MC73110 Product Manual

Theory of Operations 4
Figure 4-4:
Control loop
flow

Motor Output Module—This module inputs the desired voltage for each of the three motor coils, and generates the
correct PWM signal in either 3-signal mode (one signal per phase), or 6-signal mode (high & low signal for each phase).
The output signals are symmetric in waveform, and synchronized to the master PWM output which occurs at 20kHz
frequency. The output signals are presented on PWMAHigh, PWMALow, PWMBHigh, PWMBLow, PWMCHigh,
and PWMCLow.

Current Loop Module—This module inputs the desired current for each of the two motor coils, and uses two analog
feedback signals (CurrentA, CurrentB) to develop a PWM output value for each motor connection. The current loop
module may be disabled, in which case the MC73110 will drive the motor in voltage mode. See Section 4.5, “Motor
Output and Signal Generation,” on page 27 for more information on the motor output logic. See Section 4.6, “Current
Loop,” on page 30 for more information on the current loop module.

Commutator Module—This module accepts a single-phase desired torque or voltage command (depending on
whether the Current Loop Module is enabled), and vectorizes this command into three phased commands, one for
each motor connection. Two commutation methods are supported: Hall-based, and sinusoidal. If Hall-based is
selected, then the Hall signals must be connected through Hall1, Hall2, and Hall3. If sinusoidal is selected, in addition
to the Hall signals, quadrature encoder data must be connected through the signals QuadA and QuadB. This module
cannot be disabled. See Section 4.7, “Commutation,” on page 32 for more information on commutation.

FOC Module—Optionally, the commutation, digital current control, and motor output modules can be replaced with
FOC (Field Oriented Control). This provides Current Control in the de-referenced (D,Q) frame, and utilizes space
vector PWM for the motor output.

The Velocity Loop Module—This module accepts a desired velocity command, and combines this with the
instantaneous velocity of the motor axis to determine a desired torque or voltage command. The desired velocity
command can come from either the profile generator module, the velocity integrator module, an external analog signal
(AnalogCmd), or a synchronous serial (SPI) digital 16-bit word data stream, which is encoded on two signals:
DigitalCmdClk, and DigitalCmdData. The instantaneous velocity can come from an analog signal through the velocity
pin of MC73110, or via the quadrature encoder or Hall sensors. This module may be disabled, in which case the chip
operates in torque or voltage mode, depending on the state of the current control module. See Section 4.8, “Field
Oriented Control (FOC),” on page 35 for more information on the velocity loop.

The Velocity Integrator Module—This module accepts a desired velocity from the profile generator, an external
signal (AnalogCmd), or the SPI data stream (DigitalCmdClk, DigitalCmdData), and integrates this value into an
instantaneous desired position, which is compared with the actual position from the encoder to develop an output
desired velocity, torque, or voltage. This module may be disabled, in which case the desired velocity from the profile
generator will be fed directly into the velocity loop. See Section 4.10, “Velocity Integrator,” on page 40 for more
information on the velocity integrator module.

Profile
generator

Velocity
integrator

Velocity
loop Commutator Current

loop
Motor
output

A, B A, B To
amplifierA,B,C

CmdVelocity

CmdAccel

SPI
command

Index
Current

feedback

Tachometer

Quad
encoder

AnalogCmd Hall
sensors

FOC module
MC73110 Product Manual 25

Theory of Operations4
The Profile Generator Module—This module uses serial port commands to generate a velocity and acceleration-
bounded profile. The instantaneous desired velocity is output to the velocity integrator or the velocity loop, depending
on which of these modules are enabled. See Section 4.11, “Profile Generation,” on page 42 for more information on
the profile generator module.

4.4.1 Typical Control Applications

Although the MC73110 control loop structure is very flexible, and may be programmed in a number of ways, most
applications fall into one of three standard loop configurations. These are summarized in the following table.

Figure 4-5 and Figure 4-6 on page 27 and Figure 4-7 on page 27 illustrate the three control application configurations.

Figure 4-5:
Configuration
for a torque-
mode amplifier

Name
Modules
Enabled

Minimal
Connections Comments

Torque-mode
amplifier

Current loop Hall1–3
CurrentA/B
QuadA/B (if commutating
sinusoidally)
DigitalCmdClk/Data or
AnalogCmd

This configuration is typical of a number of appli-
cations including a torque-mode amplifier used in
conjunction with an external position controller.
The MC73110 accepts a continually changing
torque command, represented as an analog sig-
nal or as an SPI data stream, commutates this
signal into 3 phases, and drives the motor at
those torque values using analog current signals
from the motor.

Velocity-mode
amplifier

Current loop
Velocity loop

Hall1–3
CurrentA/B
QuadA/B (if commutating
sinusoidally)
DigitalCmdClk/Data or
AnalogCmd

Similar to a torque-mode amplifier, this configu-
ration adds a velocity loop, so that the continu-
ally changing command is a velocity command
rather than a torque command. The MC73110
inputs this command, performs a velocity loop
on this command using either an analog signal,
encoder data stream, or Hall sensors for velocity
feedback. The signal is then commutated into
three phases, and drives the motor at those
torque values using analog current signals from
the motor.

Intelligent motion
controller

Current loop
Velocity integrator
Profile generator

Hall1–3
CurrentA/B
QuadA/B
SrlXmt/Rcv

This control loop configuration is common when
the chip will be used as an intelligent program-
mable motion controller via serial port com-
mands.

Commutator Current
loop

Motor
outputA, B A, B

Index

To
amplifierA,B,CAnalogCmd

or SPI data

Hall
sensors

Current
feedback

Quad
encoder
26 MC73110 Product Manual

Theory of Operations 4
Figure 4-6:
Configuration
for a velocity-
mode amplifier

Figure 4-7:
Intelligent
motion
controller
configuration

4.5 Motor Output and Signal
Generation

The MC73110’s motor output logic accepts three 16-bit motor coil voltage commands (one for each coil), and
generates symmetric synchronized PWM signals output on dedicated hardware pins. Two signal generation modes are
supported: six-signal output, and three-signal output mode. The command SetPWMOutputMode controls which of
these two modes are used. Figure 4-8 on page 28 shows typical PWM waveforms.

Velocity
loop Commutator Current

loop
Motor
outputA, B A, B To

amplifierA,B,CAnalogCmd
or SPI data

Hall
sensors

Index

Current
feedback

Quad
encoder

Tachometer

Profile
generator

Velocity
integrator Commutator Current

loop
Motor
outputA, B A, B To

amplifierA,B,C

CmdVelocity

CmdAccel

Hall
sensors

Index

Current
feedback

Quad
encoder
MC73110 Product Manual 27

Theory of Operations4
Figure 4-8:
PWM
waveforms and
currents

During normal operations, a new desired coil voltage is determined at each cycle of the PWM update frequency. These
new output values are applied in synchrony at the start of each PWM cycle. If the current loop is active, these voltage
values are determined after the analog current has been input, the current control filter has been calculated, and the
new value generated. If the current loop is not active, the values are derived directly from the output of the
commutator.

4.5.1 Signal Representation

To read the output PWM signal for each phase, the command GetPWMCommand is used. The returned value is a
16-bit signed value. The actual PWM generator uses the top ten (for 20kHz PWM) or nine (for 40kHz PWM) bits of
this value level-shifted to a 50/50 PWM output value to create the final waveform. For example, a desired output value
of zero results in a waveform that is active 50% of the time, and inactive 50% of the time. A desired output value of
+ 1/2 total output is active 75% of the time, and inactive 25% of the time, etc. Note that all of these waveforms are
symmetric to minimize torque ripple during switching. Selection of 20kHz or 40Khz PWM output frequency is done
using the SetPWMFrequency command.

4.5.2 Six-Signal Mode

The output of six-signal mode provides separate high/low bridge drive signals for each of the three phases, six signals
in all. The PWM signals are output on the pins: PWMAHigh, PWMALow, PWMBHigh, PWMBLow, PWMCHigh,
and PWMCLow. When operating in this mode, a programmable dead time is active. This feature allows the user to
program an interval between successive high/low or low/high turn-on sequences for a given phase. This is often an
important requirement to avoid excessive current flow between the upper and lower switching elements of the
amplifier. To determine the correct minimum dead time, consult the specifications for your switching IC or circuit.
Six-signal and 3-signal modes are illustrated in Figure 4-9 on page 29.

Time
51.2 µsec

50% on,
0 net current command

V
ol

ta
ge

25% on,
-50% max current

75% on,
+50% max current

C

A

B

28 MC73110 Product Manual

Theory of Operations 4
Figure 4-9:
Six-signal
mode with
dead time delay

The programmed dead time delay affects all phases. The dead time delay is programmed using the command
SetPWMDeadTime, and can be read back using the command GetPWMDeadTime.

A special six-signal mode is supported when using Hall-based commutation (not FOC). In this mode, one phase of
the motor (based on the Hall states) is always left floating by keeping both the upper and lower drive signals in the off
state. This mode can result in improved efficiently and performance in some appications. This mode is selected using
SetPWMOutputMode, and can be used with or without a digital current loop.

4.5.3 Three-Signal Mode

The three-signal output mode provides one signal per phase. The dead time timer does not function when the chip is
set to this mode. Each of these three signals is encoded such that a high value means the high side of the half bridge
should be turned on, and a low signal means the low side should be turned on. Note that when using this mode, if
shoot-through protection off-times are required, this must be arranged using external circuitry provided by the user.

In this mode, the PWM signals are output on the following pins: PWMAHigh, PWMBHigh, and PWMCHigh.

4.5.4 Maximum On-Time

Many amplifiers have a requirement for a minimum off-time to allow bootstrap capacitors to recharge or for other
reasons related to the specific amplifier circuit chosen. To accommodate this, the maximum output value for each
phase can be programmed using the command SetPWMLimit. This value can be read using the command
GetPWMLimit.

The limit value specified is a 16-bit number representing the maximum value that can be output to the PWM
generation circuitry. For example, if the limit is specified as +31,500, positive values will be clipped should they exceed

Active

6-signal
mode

Inactive

3-signal
mode

Time
51.2µsec
25.6 µsec

50% on,
0 net current command

dead
time

dead
time

dead
time

(20 kHz PWM)
(40kHz PWM)
MC73110 Product Manual 29

Theory of Operations4
+31,500 and negative values will be clipped should they be less than –31,500. Note that this represents approximately
96% (31,500/32,767) maximum on time, or 4% guaranteed minimum off-time.

4.6 Current Loop

The MC73110 includes a sophisticated digital current controller that utilizes analog feedback signals to match the
actual motor currents with the desired current through each coil. The two desired motor current values are provided
by the commutator module. The actual motor currents are provided on the signals CurrentA and CurrentB.

To read the current values for each phase, the command GetLoopCommand is used. The returned value is a signed
16-bit number encoded such that +32,767 represents a request for maximum positive current output, and –32,768
represents maximum negative current output.

Figure 4-10 shows a typical setup for sensing of the motor currents.

Figure 4-10:
Motor current
sensing

For the current loop to function correctly, two analog signals, CurrentA and CurrentB, are expected to be provided to
the chip. These signals are positive voltage referenced; that is, negative, current values at the coil are input to the chip
as a positive voltage. See Section 4.21, “Analog Signal Processing,” on page 60 for details.

The current loop operates in synchrony with the PWM output generator. Utilizing high speed on-chip A/D
converters, measurements of the current are taken at each PWM cycle. The current loop then performs a PI
(proportional, integral) filter calculation to determine the desired voltages, which are then fed to the PWM circuitry.
The current loop is calculated for coils A and B, with C being calculated from C = –(A+B).

4.6.1 Current Loop Filter

Three values must be set by the user: Kpcurrent, Kicurrent, and IntegrationLimitcurrent. These parameters are set and
read using the commands SetLoopGain and GetLoopGain, respectively.

 The result of this calculation is a 16-bit number for each of the A and B phases. These values are then output to the
PWM generator circuitry. The exact filter equation for each phase is as follows.

The current loop can be disabled using the command SetLoopMode. This value can be read using GetLoop-
Mode. If the current loop is turned off, then the values from the commutator for desired A and B commands are
passed through unmodified to the PWM generator output logic.

I

P

PWM
generator Amplifier

Current
command A

Analog
offset
adjust

Current
sense

+

+

+

-

Current A
feedback
30 MC73110 Product Manual

Theory of Operations 4
CE = CurrentDesired – (CurrentActual + Offset)

where:

When the current loop is disabled, or when the motor mode is off, then the integrator remains at zero (0).

4.6.2 Current Signal Input

The analog current signals are input on the CurrentA and CurrentB signals of the MC73110 IC. To read these values,
the command GetAnalog is used. The returned value is a signed 16-bit number representing the current represented
by the voltage presented on the analog input pins. See Section 4.21, “Analog Signal Processing,” on page 60 for details
on converting analog values to numeric values and vice-versa.

4.6.3 Current Signal Offset Bias

A special feature of the MC73110 is that a software offset bias can be introduced after the A/D conversion of the
analog input signals. This may be useful to zero-reference the analog circuitry without the need for manually adjusted
potentiometers. To add a bias to the CurrentA and CurrentB values read by the chip, the command SetAnalogOffset
is used. To read this value, the command GetAnalogOffset is used.

The offset value is added to the value read by the chip to determine the value used during current loop calculations.
A simple way of determining the current offset of each signal is to disable the amplifier output, and read the analog
signals using GetAnalog. Since the amplifier is turned off, the read value should indicate zero current. This value can
then be negated and entered as the offset to correctly zero-reference that analog input. For example, if the value read
is –75, the offset value should be set as +75.

4.6.4 Feedback Signal Scaling Considerations

The MC73110 provides general-purpose current control features that can be used with a wide variety of amplifiers
and over a wide range of power ratings. It is important to insure that the overall range of expected currents driven in
the motor coils matches the overall operational range for which the feedback circuit is scaled.

When determining overall sensitivity, some over-range current capacity beyond the steady-state operating values
should be included. In most applications, 30–70% is advised. For example, if the maximum steady state current of the
motor is designed to be 10 amps, it is advisable to scale the feedback circuit to allow a total range of ~ ± 15 amps. In

CE is the current error term
CurrentDesired is the output of the commutator for either phase A or phase B
CurrentActual is the value input at CurrentA or CurrentB
Offset is the offset parameters stored using SetAnalogOffset
CurrentOutput is the output from the current loop
CurrentKp is the current proportional gain
CurrentKi is the current integral gain

Due to temperature changes and other factors, the ideal offset value may change during operation and over the
lifetime of product usage. It is the responsibility of the designer to ensure that the MC73110 and any associated
amplifier circuitry is operated within safe limits.

CurrentOutputn CEn CurrentKp 64 CEj

j 0=

n

∑ CurrentKi 256⁄×+⁄×=
MC73110 Product Manual 31

Theory of Operations4
this application, this would mean that the current sense circuitry would have a sensitivity of maximum current/(3.3V/
2) or 9.1 A/V (amps per volt).

4.7 Commutation

Figure 4-11 shows an overview of the control flow of the sinusoidal commutation portion of the MC73110 IC.

Figure 4-11:
Sinusoidal
commutation

For input, the commutation portion of the IC uses the command value from the velocity loop. The first source is the
velocity integrator loop, or profile generator (depending on which of these modules are enabled). The second source
is a manually-set register known as theMotor Command register. The MC73110 accepts the command value from the
velocity loop and/or upstream components when the motor mode parameter is set to On. Conversely, the manual
register, which is loaded by the user, is used as motor command input when the motor mode is set to Off.

4.7.1 Motor Command Register

To set the motor mode, the command SetMotorMode is used. To read this value, the command GetMotorMode is
used. To set the Motor Command register, which allows the user to write output commands directly to the motor, the
command SetMotorCommand is used. Operating the IC in manual mode can be useful for calibrating the amplifier
circuitry. For example, by setting the motor mode off, write commands to the motor register can be used to set an
exact value of 5000, or 10,000 to the PWM output logic. This can be useful for running the motor at a fixed voltage
value, or to measure the controlled response of the system to changes in the motor command.

The motor mode is also important during recovery from a motion error, if this facility is used. The MC73110 has the
ability to compare the velocity or position error against a user-defined window, and enter a motion error condition if
this value is exceeded. When this error occurs (assuming AutoStopMode is enabled), motor mode is set to Off. This
feature is described in more detail in Section 4.9.5, “Motion Error Detection,” on page 39.

4.7.2 Motor Command Limiting

The MC73110 allows the maximum value accepted by the commutator to be set. This motor limit value is set using
the command SetMotorLimit. It can be read using the command GetMotorLimit.

The specified motor limit affects the value input into the commutator such that if the magnitude of the input motor
command exceeds the motor limit, then the output value is maintained at the motor limit value. For example, if the

PhaseA
command

Motor command
register

(SetMotorCommand)

PhaseB
command

SetMotorMode Off

SetMotorMode On

From velocity loop,
or velocity integrator

Motor
limit Actual position

(if encoder-based)

To current
loop & motor

output

Hall 1 - 3
32 MC73110 Product Manual

Theory of Operations 4
value of the motor command from the velocity loop is –32,500, and the value of the motor limit has been set to 30,000,
then the value used by the commutator will be –30,000.

4.7.3 Sinusoidal Commutation

The pre-commutated motor command is vectorized into three phased signals using either a sinusoidal lookup
technique, or a Hall-based technique. To set the commutation mode, the command SetCommutationMode is used.
To read this value, the command GetCommutationMode is used.

If sinusoidal commutation is selected, in addition to Hall sensors, an encoder must be connected to the MC73110. The
Hall sensors are required for initializing sinusoidal commutation to the correct angle. It is necessary to specify the
number of encoder counts per electrical cycle. To determine this value, the number of magnetic poles on the motor,
along with the number of encoder counts per motor revolution, must be known. Knowing these two quantities, the
number of encoder counts per electrical cycle is produced using the following equation.

Counts_per_cycle = 2*Counts_per_rot/N_poles

where:

Figure 4-12 on page 34 shows the relationship between the state of the three Hall sensor inputs, the sinusoidally
commutated phase currents, and motor phase-to-phae back EMF waveforms during forward motion of the motor
(positive motor command).

The motor limit is only applied when the motor is “On,” that is, when the value set using SetMotorMode is
“On.” If the motor mode is off, the value set using SetMotorCommand will be applied regardless of whether
it exceeds the motor limit.

Counts_per_rot is the number of encoder counts per motor rotation
N_poles is the number of motor poles
MC73110 Product Manual 33

Theory of Operations4
Figure 4-12:
Motor
command
phasing vs.
Hall sensors

The command used to set the number of encoder counts per electrical cycle is SetPhaseCounts. To read this value,
the command GetPhaseCounts is used.

4.7.4 Hall-based Commutation

If Hall-based commutation is specified, the Hall sensors are used to commutate the motor using a six-step technique,
and no encoder data is used for commutation.

Figure 4-12 on page 34 shows the relationship between the state of the three Hall sensor inputs and the output
waveforms when Hall-based commutation is selected during forward motion of the motor.The following table details
the expected Hall states for forward rotation of the motor. In order for correct motor operation, the Hall states must
match the states in the table:

Hall1 Hall2 Hall3 Phase A Output Phase B Output
1 0 0 - Motor Command 0
1 1 0 0 - Motor Command
0 1 0 + Motor Command - Motor Command

A CB

180 240 300 0 60 120 180

A-B B-C C-A

Phase
Currents

Phase-to-
phase BEMF

Voltages

Hall A

Hall B

Hall C
34 MC73110 Product Manual

Theory of Operations 4
4.7.5 Automatic Phase Correction

To enhance long-term commutation reliability when operating in sinusoidal commutation mode, the MC73110
provides automatic phase correction using Hall sensors (the default value), or an index pulse, if one is available. By
using an index pulse during the phase calculations, any long term loss of quadrature encoder counts which might
otherwise affect the accuracy of the commutation are automatically eliminated.

If an index pulse is available, then it should be used to perform automatic phase correction. To set the phase correction
mode, the command SetPhaseCorrectionMode is used. To read this value, the command
GetPhaseCorrectionMode is used.

4.8 Field Oriented Control (FOC)

The MC73110 supports the use of Field Oriented Control (FOC), which provides improved performance compared
to phase current, especially at fast motor speeds. The performance benefits are realized because, in FOC, the current
loops are run in a de-rotated frame of reference (D/Q frame), compared to the rotating motor frame of reference
(phase A/B frame). Thus the torque producing (Q) and magnetizing (D) currents are controlled directly, rather than
controlling the sinusoidal A/B phase currents.

FOC current control is enabled using the SetCommutationMode command. FOC can be used with either Hall-
based or Encoder-based (sinusoidal) phasing. When enabled, FOC replaces the commutation, digital current loop, and
motor output blocks. However, all of the API commands that normally control the operation of these blocks are still
used to control the operation of the equivalent functionality in FOC.

Figure 4-13 on page 36 shows the FOC current control flow. The commutation module is replaced with transforms
that convert the 3-phase rotating (A,B,C) frame to/from a 2-phase de-rotated frame (D/Q). These transform
opertions require the motor phase, which is initialized and commutated using the same methods and commands used
for normal Hall-based or sinusoidal commutation.

The Phase A/B digital current loops are replaced with a D and a Q current loop. The same commands are used to set
parameters and read values for the current loops, with the D loop replacing the A loop, and Q loop replacing the B
loop. This applies to SetLoopGain, GetLoopCommand, GetLoopError, and GetLoopIntegral. The feedback
currents (in A/B domain) are still available using GetAnalog.

0 1 1 + Motor Command 0
0 0 1 0 + Motor Command
1 0 1 - Motor Command + Motor Command

Sinusoidal phasing requires both encoder and Hall sensors.

Hall1 Hall2 Hall3 Phase A Output Phase B Output
MC73110 Product Manual 35

Theory of Operations4
Figure 4-13:
FOC current
control flow

For motor output, the phase-specified PWM generation is replaced with space-vector PWM. However, the PWM
output mode (6-signal or 3-signal), dead time, and PWM limit are still configurable using the same commands as would
be used in the A/B domain operation. The actual PWM duty cycle sent to each phase is still available using
GetPWMCommand. The only restriction when using FOC is that the PWM output mode which floats the third leg
is not available, regardless of whether Halls are used for phasing or not.

4.9 Velocity Loop

The velocity loop accepts a desired velocity command from one of four sources: the profile generator, the velocity
integrator, the analog signal input AnalogCmd, or the 16-bit synchronous serial SPI-port at pins DigitalCmdClk and
DigitalCmdClk. In all cases, the input value is a signed 16-bit word representing the desired velocity. If the velocity
loop is disabled, then this value is passed through to the commutation module, effectively putting the chip in torque
or voltage mode. To disable and enable the velocity loop, the command SetLoopMode is used, and the command
GetLoopMode reads this value. To read the instantaneous value of the selected velocity command source, the
command GetLoopCommand is used.

For more information on scaling and related issues for analog signal input, see Section 4.21, “Analog Signal
Processing,” on page 60. See Section 4.20, “Synchronous Serial Input (SPI Port),” on page 59 for more information
on the format and timing of the SPI port.

4.9.1 Velocity Feedback

There are three possible sources for the instantaneous value of the motor velocity, which is required for the velocity
loop to operate properly. The first is an analog input connected to a tachometer, the second is the encoder data stream,
and the third are the Hall sensors. To select the velocity source, the command SetVelocityFeedbackSource is used.
This value can be read using GetVelocityFeedbackSource.

If the analog source is selected, the voltage from the tachometer is read at the velocity loop update rate, converted
internally using an A/D, and then used for subsequent velocity loop filter calculations. If the encoder or Halls is used,
the velocity is calculated using an estimator model which observes the encoder or Hall sensor data stream.

If the velocity source is selected as tachometer, then the velocity value, input through the tachometer signal, is a signed
16-bit number encoded in the same way as other analog input signals (see Section 4.21, “Analog Signal Processing,”

QLoop
Error

Transform

PI

Inverse
Transform

+
-

PI

CurrentA

CurrentB

Encoder

0 (zero)

DLoop
Error

Motor command
register

(SetMotorCommand)

SetMotorMode Off

SetMotorMode On

From velocity loop,
or velocity integrator

Motor
limit

+
-

Space
Vector
PWM

Output
Stage

To Motor

Halls
36 MC73110 Product Manual

Theory of Operations 4
on page 60 for more information). However, if the velocity source is selected as encoder or Halls, the velocity value
must be re-scaled from its native representation, which is counts per cycle (either encoder counts or Hall states).

This is accomplished using a velocity scalar, set using the command SetVelocityScalar, and read using the command
GetVelocityScalar. The scalar operates within a range of 3 to 32,767. After a reset or at power-up, the default value
is 3. In addition to converting counts per cycle representations to 16-bit velocity representation, the velocity scalar may
also used to convert in the opposite direction. See Section 4.10, “Velocity Integrator,” on page 40 for details. To set
the cycle time of the IC, which is normally 102.4 µsec (9.76 kHz cycle rate), the command SetSampleTime is used.
See Section 4.12, “Loop Rate,” on page 43 for more information.

To convert a counts per cycle representation to 16-bit velocity representation, the specified velocity scalar is simply
multiplied by the velocity in counts per cycle. For example, if measured velocity using the encoder is 7 counts in a
particular cycle, and the velocity scalar has been set to 1,000, then the 16-bit velocity representation of that velocity
will be 7,000. The velocity signal is filtered using a second order IIR filter and then input to the velocity loop as a 16-
bit quantity. Because the velocity is subject to quantization error it is good practice to choose the velocity scalar as large
as possible while still avoiding overflow (see the warning below). See Section 4.9.3, “Velocity Loop Filter,” on page 38
for more information.

If the Halls are used for velocity feedback, performance will be limited by resolution of the Hall sensors. In order to
achieve reasonable performance using Hall-based velocity estimation, it is recommended that at least one Hall crossing
occur every 5 cycles. In most cases, this must be done by significantly increasing the sample time from the 102.4 µsec
default. When using Halls, the same rules apply regarding setting the velocity scalar as in the encoder case.

Figure 4-14:
Velocity
feedback and
scaling

4.9.2 Velocity Scalar

In this section, two examples which illustrate the functionality of the velocity scalar will be provided.

Velocity Scalar Example 1: Velocity Loop

In this example, the desired result will be using the velocity loop to command a motor to move at seven counts per
cycle.

When selecting the velocity scalar, be sure to specify a range appropriate for the expected encoder rate and cycle
time which has been selected. For example, if the instantaneous encoder rate experienced by the MC73110 and
the velocity scalar programmed by the user results in a 16-bit velocity value exceeding 32,767, or less than
–32,768, then the value will become “clipped.” This will result in an inaccurate velocity value, and may potentially
cause unstable motion.

From
Analog Cmd

From profile
generator

From
SPI input

P

I
with limit

select
SetVelocityFeedbackSource

Velocity
scalar

+

Velocity
estimator

To commutator
motor command

From
encoder
or Halls

From tachometer velocity

 +

 +

_

select
SetCommandSource

Velocity
scalar
MC73110 Product Manual 37

Theory of Operations4
First, the expected absolute maximum encoder or Hall counts per cycle must be determined. Anticipating a 50%
velocity overshoot transient results in a maximum encoder rate of 10.5 counts per cycle. The result of multiplying the
encoder or Hall feedback times the velocity scalar must fit in a 16-bit 2’s complemented word. Hence, the velocity
scalar is determined by dividing 32767 by 10.5:

32,767/10.5 = 3121 (rounded up)

Therefore, the command SetVelocityScalar 3121 would be sent to the motion control processor, along with other
startup configuration settings. The velocity has been set at seven counts per cycle. So the 16-bit value that represents
the velocity command in Figure 4-14 on page 37 would be:

3121 x 7 = 21,847

If the command source is set to SPI, then the 16-bit value received on the SPI interface is 21847 (5557h). If a velocity
of –7 counts per cycle is desired, then the 16-bit value on the SPI interface should be –21847 (AAA9h). If the
command source is set to AnalogCmd, then the voltage on the analog input would be calculated as follows:

1.65V + (21,847 x 1.65/32,767) = 2.75V

If the command source is set to profile generator, then the velocity scalar is determined in the same way. The value
used in the SetVelocity command should not include the velocity scalar.

Velocity Scalar Example 2: Velocity Integrator Loop

In the following example, the desired goal is to use the velocity integrator loop to command a motor to move at 7
counts per cycle. The logic behind determining an appropriate velocity scalar when using the velocity integrator loop
is different than the logic when using a velocity loop. In the velocity integrator loop, the velocity scalar is applied to
the SPI or analog input instead of the encoder feedback. In the context of the velocity integrator, the velocity scalar
allows for increased resolution of the reference velocity. For instance, if a Velocity Scalar was not used, then a fractional
reference velocity could not be represented at the SPI or analog input. Therefore, the velocity scalar is really only useful
when the desired value of counts per cycle is non-integer.

When using the SPI or analog command source input, the value read at the input results in a 16-bit number. Only after
this number has been divided by the velocity scalar and the result transformed to a 16.16 format is the number used
for integration. As in the previous example, a velocity scalar of 3121 will be chosen. (However, a larger velocity scalar
could have been chosen, such as 4681 (32,767/7)). Using a velocity scalar value of 3121, the 16-bit SPI value would
still be 21,847, and the analog voltage input would be 2.75V. The equations for determining these values remain the
same. When using the profile generator as the command source, the velocity scalar becomes irrelevant in the velocity
integrator loop.

4.9.3 Velocity Loop Filter

Three values must be set by the user: VelocityKp, VelocityKi, and VelocityILimit. These parameters are set and read
using the commands SetLoopGain, and GetLoopGain, respectively.

The result of the velocity loop calculation is a signed 16-bit number. This value is then input to the commutation
module. To read this value the command GetMotorCommand is used. To read the instantaneous velocity loop error
value, the command GetLoopError is used. The velocity loop is calculated as follows:

VEn = VelocityDesiredn – VelocityActualn

where:

VE is the velocity error term

VelocityOutputn VEn VelocityKp 64 VEj

j 0=

n

∑ VelocityKi 256⁄×+⁄×=
38 MC73110 Product Manual

Theory of Operations 4
When the velocity loop is disabled, or when the motor mode is off, then the integrator remains at zero (0).

4.9.4 Tachometer Signal Offset Bias

As was the case for the digital current feedback inputs, the MC73110 has the ability to store a software offset bias
which is combined with the A/D value for the AnalogCmd signal and/or the tachometer signal. This may be useful
for zero-referencing the analog circuitry without the need for external adjusting circuitry such as potentiometers.

The AnalogCmd and Tachometer signals can be read using the command GetAnalog. The returned value is a signed
16-bit number representing the velocity command or analog feedback value on the analog input pin. See Section 4.21,
“Analog Signal Processing,” on page 60 for details on converting analog values to numeric values and vice-versa.

To add a bias offset to the AnalogCmd or Tachometer signals, the command SetAnalogOffset is used. To read this
value, the command GetAnalogOffset is used.

The offset value is added to the value read by the chip to determine the value used during velocity loop calculations.
A simple way of determining the offset of this signal is to lock the motor position, and read the analog signal using
GetAnalog. Since the external voltage sources are disconnected, the read value should indicate zero voltage. This
value can then be negated and entered as the offset to correctly zero-reference that analog input. For example, if the
value read is –75, the offset value should be set as +75.

4.9.5 Motion Error Detection

Under certain circumstances, the actual axis velocity may differ from the desired velocity by an excessive amount. Such
an excessive velocity error often indicates a potentially dangerous condition such as motor or encoder failure, or
excessive mechanical friction. To detect this condition, the MC73110 includes a programmable maximum error
feature.

The maximum error is set using the command SetMotionErrorLimit, and read using the command
GetMotionErrorLimit. If the maximum velocity error value is exceeded, then the motor is said to be in motion error.
When this occurs, the Motion Error bit in the axis Event Status word is set. At this time, the axis motor may be turned
off (equivalent of SetMotorMode Off command), depending on the state of the automatic motor shutdown mode
(see SetAutoStopMode command description). See Section 4.13, “Status Words,” on page 44 for more information
on the Event Status word.

Motion error detection is still performed when using tachometer feedback or an analog or SPI command reference
input. When defining the value for SetMotionErrorLimit, 16.16 scaling and the velocity scalar should be taken into
consideration. That is, the value used for the parameter to SetMotionErrorLimit should be in a 16.16 format and
then divided by the velocity scalar before being sent to the chip.

VelocityDesired is the velocity command from the velocity integrator, profile generator, SPI, or
analog source

VelocityActual is the measured velocity from the encoder or tachometer source
VelocityOutput is the output from the velocity filter
VelocityKp is the velocity proportional gain
VelocityKi is the velocity integral gain
VelocityKout is a velocity output scalar

Due to temperature changes and other factors, the ideal offset value may change during operation and over the
lifetime of product usage. It is the responsibility of the designer to insure that the MC73110 and any associated
amplifier circuitry is operated within safe limits.
MC73110 Product Manual 39

Theory of Operations4
4.9.6 Recovering from a Motion Error

If the AutoStopMode is set active and a motion error occurs, the motor mode will automatically be set to off. In
addition, at the time this happens, the Motor Command register, normally set using the command
SetMotorCommand, will have a value of zero written to it. This will result in the motor coming to a halt, because
the motor command at that point is zero.

To return to normal operation, the command SetMotorMode is used with a value of On. This will set the IC to
automatic control using the velocity loop to continuously drive the commutator and downstream modules. In addition,
it may be desirable to clear the Motion Error bit in the Event Status word. See Section 4.13, “Status Words,” on
page 44 for more information on the Event Status word.

4.9.7 Auto Stop Mode

The command SetAutoStopMode determines whether or not a motion error causes the motor mode to be
automatically set to off, which will relinquish control of the motor output to the manually-set Motor Command
register. The value of this register can be read using GetAutoStopMode.

If this command is set to Enable, then upon a motion error the motor mode will be set off, the Motor Command
register will be set to zero, and thus the axis will come to a stop. If the SetAutoStopMode is set to Disable, then even
if a motion error occurs, the motor mode will not be affected.

4.10 Velocity Integrator

The MC73110 includes a special feature known as a velocity integrator which allows 32-bit velocity profile resolutions
to be generated from 16-bit velocity values. If enabled, the velocity integrator can utilize velocity values from the
profile generator, the SPI data stream, or the AnalogCmd signal. To select the source for the velocity integrator, the
command SetCommandSource is used. To read this value, the command GetCommandSource is used.

To convert 16-bit velocity representations provided by the SPI data stream or AnalogCmd into the 16.16 velocity
format which is integrated to create a 32-bit position, the VelocityScalar register is used. The conversion is performed
by multiplying the 16-bit value by the reciprocal of the scalar value. For example, if the value read through AnalogCmd
is 3,500, and the scalar is 1,000, the velocity used by the integrator is 3.5 counts per cycle, which in 16.16 coding is a
value of 3 in the high word, and a value of 8000h in the low word. See Section 4.9.1, “Velocity Feedback,” on page 36
for more information on the VelocityScalar. To enable and disable this module, the command SetLoopMode is used.
To read this setting, the command GetLoopMode is used.

After a motion error, it is not recommended that operation of the IC be restarted before the axis has come to a
full stop, and the cause of the motion error has been determined.
40 MC73110 Product Manual

Theory of Operations 4
Figure 4-15:
Velocity
integrator
source select

If this module is enabled, at each servo loop update cycle, the output of the profile generator is accumulated in a 32-
bit Target Position register, which is then directly compared with the 32-bit actual position to form a 16-bit position
error. This position error is then put through a complete PID filter, and the output of this filter calculation is made
available to the downstream components. This will be either the velocity loop or the commutator, depending on
whether the velocity loop has been enabled.

4.10.1 Velocity Integrator Loop Filter

Figure 4-15 shows a flow diagram for the integrated velocity loop filter incorporated in the MC73110. Four values can
be set by the user: Kpvelocityintegrator, Kivelocityintegrator, Kdvelocityintegrator, and IntegrationLimitvelocityintegrator. These
parameters are set using the command SetLoopGain, and the parameters are read using the command GetLoopGain.
To read the current integral value, the command GetLoopIntegral is used.

The equation for calculating the output of the velocity integrator filter is as follows.

Et = PositionDesired – PositionActual

where:

When the velocity integrator loop is disabled, or when the motor mode is off, then the integrator remains at zero(0).

PositionDesired is the 32-bit desired position from the velocity integrator
PositionActual is the 32-bit position from the encoder
En is the position error at time n
En–1 is the position error at time n–1
Kp is the proportional gain
Kd is the derivative gain
Ki is the integral gain

The tachometer or Hall-based velocity estimation can not be used with the velocity integrator loop.

P

I
with limit

Velocity integrator
source select
SetCommandSource

+

D

To
velocity
loop

Encoder
position

From profile generator

From SPI input

From Analog Cmd

 +

 +
+

_

Desired
position

65536
Velocity scalar

Velocity
integrator
(position)

65536
Velocity scalar

Outputn KpEn Kd En En 1––() Ej

j 0=

n

∑ Ki×+ +=
MC73110 Product Manual 41

Theory of Operations4
4.10.2 Motion Error Detection

Similar to the velocity loop, under certain circumstances, the actual axis position may differ from the integrated
position by an excessive amount. Such an excessive position error often indicates a potentially dangerous condition
such as motor or encoder failure, or excessive mechanical friction. To detect this condition, the MC73110
automatically utilizes the motion error facility. See Section 4.9.5, “Motion Error Detection,” on page 39 for more
information. If this module is enabled, it will monitor the position error of the velocity integrator.

If the velocity integrator loop is enabled, the maximum error set using the SetMotionErrorLimit applies to the
position error of the velocity integrator, rather than the velocity error. If both the velocity integrator and the velocity
loop are active, the velocity integrator has precedence, and no velocity error monitoring is performed. In other
respects, the motion error processing is identical.

To return to normal operation, one additional step is required. The position error should be set to zero to avoid a
motion jump upon re-enabling the motor mode to on. This is accomplished with the ClearPositionError command.
Executing this command will reset the velocity integrator target position equal to the current actual position, thereby
insuring that there is no motion discontinuity upon setting the motor mode on.

4.10.3 Recovering from a Motion Error

Recovering from a position-based motion error is similar to recovering from a velocity-based motion error. If
AutoStopMode is set active and a motion error occurs, the motor mode will automatically be set to off. In addition,
at the time this happens, the Motor Command register, normally set using the command SetMotorCommand will
have a value of zero written to it. This will generally result in the motor coming to a halt because the motor command
at that point is zero.

To recover, the command SetMotorMode is then used with a value of on. This will set the IC to restore operation
through the velocity integrator; continuously driving the velocity loop (if enabled) and/or commutator and
downstream modules. In addition, it may be desirable to clear the Motion Error bit in the Event Status word. See
Section 4.13, “Status Words,” on page 44 for more information on the Event Status word.

4.11 Profile Generation

The internal profile generator can be used to generate acceleration and velocity-bounded profiles to directly drive the
motor without continuous external signals from the AnalogCmd or DigitalCmdClk and DigitalCmdData signals.

To enable the profile generator, the command SetCommandSource is used. To read this value, the command
GetCommandSource is used. Note that effective use of the profile generator is tied to the processing of serial port
commands; if the serial port is not being used, the profile generator cannot be effectively used.

The following table summarizes the host-specified profile parameters for the profile generator:

To operate the profile generator, the host specifies two parameters: the commanded acceleration, and the maximum
velocity. The trajectory is executed by continuously accelerating the axis at the commanded rate until the maximum
velocity is reached, or until a new acceleration or velocity command is given. To set the maximum velocity, the
command SetVelocity is used. This value can be read using GetVelocity. To set the acceleration, the command
SetAcceleration is used. To read this value, the command GetAcceleration is used.

Profile
Parameter Format Word Size Range
Maximum Velocity 16.16 32 bits –32,768 to 32,767 + 65,535/65,536 counts/cycle.
Acceleration 16.16 32 bits 0 to 32,767 + 65,535/65,536 counts/cycle2.
42 MC73110 Product Manual

Theory of Operations 4
The acceleration value must always be positive. Motion direction is controlled using the velocity value. Positive velocity
values result in positive motion, and negative velocity values result in negative motion. There are no restrictions to on-
the-fly profile parameter changes.

Figure 4-16 details a typical velocity profile using this mode.

Figure 4-16:
Typical velocity
profile

To read the instantaneous velocity of the profile generator, the command GetLoopCommand using the argument
VelocityIntegrator is used. The returned value is a 32-bit number with 1/216 scaling.

4.11.1 Motor Mode

If the motor mode is set to off, either by a host command, or automatically because of a motion error, the trajectory
generator is automatically halted. The instantaneous velocity, read using the command GetLoopCommand, will be
zero. Once the SetMotorMode command is set to “on,” the trajectory will resume. The instantaneous velocity will
be zero at that point, and any subsequent motion will be based on the trajectory profile commands in place at that time.

4.12 Loop Rate

The overall servo loop rate, also known as the the cycle time, can be changed by the user using the command
SetSampleTime. This value can be retrieved using the command GetSampleTime.

Although it is generally not necessary to change the sample time, for some applications this may improve performance.
Sample time affects the rates of the following modules: profile generator, velocity integrator, and velocity loop. It does
not affect the commutation rate, the current loop rate or the PWM output rate.

The loop rate is specified to the chip set as an integer number of microseconds. The minimum value allowed is 102
µsec. This is also the default value. The sample time can be increased by multiples of 51.2 µsec, rounding to the nearest
integer value. For example, 154, 205, 256, etc.

The sample time should not be changed while axes are in motion.

Time

Ve
lo

ci
ty

Example: Velocity Contouring Mode

Change max velocity and acceleration

Change max velocity Change max velocity and acceleration
MC73110 Product Manual 43

Theory of Operations4
4.13 Status Words

The MC73110 can monitor various aspects of the motion of the axis. Various numerical registers can be queried to
determine the current state of the axis, such as the actual position (GetActualPosition command), or the current
motor command (GetMotorCommand), etc.

In addition to these numerical registers, there are three bit-oriented status registers which provide a continuous report
on the state of the axis. These status registers conveniently combine a number of separate bit-oriented fields. These
three 16-bit registers are Event Status, Activity Status, and Signal Status.

The host may query these three registers, or the contents of these registers may be used in some operations to trigger
other events such as AmplifierDisable signal output, or PWMOutputDisable. See Section 4.14, “Programmable
Conditions,” on page 47 for more information on these functions.

4.13.1 Event Status Register

The Event Status register is designed to record events which do not continuously change in value, but tend to occur
once upon some specific event. As such, each of the bits in this register are set by the chip and cleared by the host.

The Event Status register is defined in the following table.

The command GetEventStatus returns the contents of the Event Status register.

Bits in the Event Status register are latched. Once set, they remain set until cleared by a host instruction or a system
reset. Event Status register bits may be reset to 0 by the command ResetEventStatus.

4.13.2 Activity Status Register

Like the Event Status register, the Activity Status register tracks various chip registers. Activity Status register bits are
not latched; they are continuously set and reset by the chip to indicate the states of the corresponding conditions.

The Activity Status register is defined in the following table:

Bit Name Description
0 — Reserved
1 Wrap-around Set(1) when the actual (encoder) position has wrapped from maximum

allowed position to minimum, or vice versa.
2 — Reserved
3 Capture Received Set(1) when a position capture has occurred.
4 Motion Error Set(1) when a motion error has occurred.
5–7 — Reserved
8 Amplifier Error Set when the programmable amplifier error condition becomes true.
9–14 — Reserved
15 User Command Error Set (1) if error occurred processing user commands from EEPROM or

Flash after chip reset.

Bit Name Description
0–5 — Reserved
6 Overtemperature Set (1) when the overtemperature condition is active, cleared (0) when the over-

temperature condition is not active. The overtemperature condition is controlled by
the maximum temperature register and the command SetTemperatureLimit.

7 PWMDisable Set (1) when PWMDisable condition mask evaluates to True.
44 MC73110 Product Manual

Theory of Operations 4
The command GetActivityStatus returns the contents of the Activity Status register.

The bits in this register are set by the chip and cannot be directly reset by the host, as is possible with the Event Status
word. Some host commands will affect the state of these bits, such as altering the maximum temperature value, or
reading a position capture.

4.13.3 Signal Status

The Signal Status register provides real-time signal levels for various chip I/O pins. The Signal Status register is defined
in the following table.

The command GetSignalStatus returns the contents of the Signal Status register.

All Signal Status register bits are inputs, except bit 15 (AmplifierDisable), which is an output.

The SetSignalSense command will effect the values returned by the GetSignalStatus command. The default state
of the signal sense mask is 0000h. In this state, GetSignalStatus will return 1 for any input at 3.3V, and 0 for any input
at 0V. The results of GetSignalStatus returning [010x xx10 1xxx x011]b are shown in the following table.

8 Motor Mode Set (1) when the motor is on, cleared (0) when the motor is off. When the motor is
on, the chip can perform profile generation, and the velocity integrator and velocity
loop, if enabled, will be active. When the motor is off, profile generation cannot be
performed, the velocity integrator and velocity loop are not active (regardless of
whether they are enabled or disabled), and the motor command is derived from the
Motor Control register.

9 Position Capture Set (1) when a new position value is available to read from the high-speed capture
hardware. Cleared (0) when a new value has not yet been captured. While this bit is
set, no new values will be captured.

10 Overvoltage Set (1) when Bus voltage exceeds the Overvoltage limit.
11 Undervoltage Set (1) when Bus voltage exceeds the Undervoltage limit.
12–15 — Reserved

Bit Name Description
0 QuadA QuadratureA encoder input
1 QuadB QuadratureB encoder input
2 Index Index input
3–6 — Reserved
7 Hall1 Hall effect sensor input number 1
8 Hall2 Hall effect sensor input number 2
9 Hall3 Hall effect sensor input number 3
10–12 — Reserved
13 Estop Emergency stop input signal
14 PWMOutputDisable PWMOutputDisable input signal
15 AmplifierDisable AmplifierDisable output signal level

Input Voltage
AmplifierDisable 0
PWMOutputDisable 3.3
Estop 0
Hall3 3.3
Hall2 0
Hall1 3.3
Index 0
EncoderB 3.3

Bit Name Description
MC73110 Product Manual 45

Theory of Operations4
If the SetSignalSense command is used to change the signal sense mask from the default value (0000h), then the
interpretation of the voltage states will change. For example, if the command SetSignalSense 2380h is used, and the
GetSignalStatus returns the same value as in the previous example ([010x xx10 1xxx x011]b), then the interpretation
of the voltage state of the various inputs are changed as shown in the following table.

Using the SetSignalSense command changes the values returned by GetSignalStatus. However, SetSignalSense
will not affect the logical interpretation of the Signal Status values. For example, if GetSignalStatus returns a zero for
the Estop bit, then the Estop is considered to be inactive, regardless of whether or not SetSignalSense was used to
translate the true voltage level at the Estop pin. This is because the MC73110 will interpret the state of a bit (active or
inactive) only after taking the signal sense mask into consideration.

The bits in the Signal Status register represent the logical level (not the hardware level) of each of these signals. These
two values may be different if a value other than 0 is programmed in the signal sense mask. See Section 4.13.4, “Signal
Sense Mask,” on page 46 for more information.

4.13.4 Signal Sense Mask

The bits in the Signal Status register represent the state of various signal pins on the chip. These bits can be inverted.
This is useful for changing the interpretation of input or output signals to match the signal interpretation of the user’s
hardware.

The Signal Sense Mask register is defined in the following table.

The command SetSignalSense sets the signal sense mask value. The command GetSignalSense retrieves the current
signal sense mask.

EncoderA 3.3

Input Voltage
AmplifierDisable 0
PWMOutputDisable 3.3
Estop 3.3
Hall3 0
Hall2 3.3
Hall1 0
Index 0
EncoderB 3.3
EncoderA 3.3

Bit Name Description
0, 1, 3–6 — Reserved
2 Index Set (1) is Low to High transition resulting in a capture.

Set (0) is High to Low transition resulting in a capture.
7 Hall1 Set (1) to invert Hall1 signal. Clear (0) for no inversion.
8 Hall2 Set (1) to invert Hall2 signal. Clear (0) for no inversion.
9 Hall3 Set (1) to invert Hall3 signal. Clear (0) for no inversion.
10–12 — Reserved
13 Estop Set (1) for active high interpretation. Clear (0) for active low interpretation.
14–15 — Reserved

Input Voltage
46 MC73110 Product Manual

Theory of Operations 4
4.14 Programmable Conditions

The MC73110 supports the ability to monitor a number of condition bits in either the Event Status, Activity Status,
or Signal Status words. This condition may be used to trigger various chip events.

The chip events that can be programmed are the setting of the AmplifierError (bit 8 in the Event Status word), the
setting of the AmplifierDisable signal, and the control of PWM output. A wide variety of conditions can be
programmed, so that behaviors such as “disable PWM output when an overtemperature condition occurs,” or “define
an amplifier error as AmplifierDisable being low” may be defined.

The following table defines the condition-select bit mask for all programmable events:

*The Amplifier error bit is available only for the AmplifierDisable and PWMDisable events, and not for
the Amplifier error event.

4.14.1 Amplifier Error Bit

Bit 8 of the Event Status is designed to indicate when an amplifier error has occurred. However, the definition of an
amplifier error is user-programmable.

The command SetConditionMask is used to set the condition mask, and the command GetConditionMask is used
to read it. A 1 in the bit mask means that that if an active condition occurs in the corresponding source register bit,
the condition is satisfied. If more than one bit-field is programmed with a 1, a logical OR condition is applied. For
example, to define an amplifier error condition as the occurrence of an overtemperature or an Estop going active, the
condition mask would be set to 2040h.

4.14.2 AmplifierDisable Output Pin

The AmplifierDisable signal of the MC73110 may be programmed in a manner similar to the amplifier error condition.
The table in Section 4.14, “Programmable Conditions,” on page 47 is used to determine the correct mask value. The
command that is used to program this mask is SetConditionMask. This value can be read using the command
GetConditionMask.

Bit Name
Register
Location

Source
Bit

0–2 — (Reserved) — —
3 Capture Received Event Status 3
4 Motion Error Event Status 4
5 — (Reserved) — —
6 Overtemperature Activity Status 6
7 — (Reserved) — —
8 Amplifier Error* Event Status 8
9 — (Reserved) — —
10 Overvoltage Activity Status 10
11 Undervoltage Activity Status 11
12 — (Reserved) — —
13 Estop Signal Status 13
14 PWMOutputDisable Signal Status 14
15 — (Reserved) — —
MC73110 Product Manual 47

Theory of Operations4
In this case, if the defined condition becomes true, then the AmplifierDisable signal is driven active. If conditions
change such that it is no longer true, then the signal is driven inactive.

The AmplifierDisable output will also be driven active in case of an error processing user commands from EEPROM/
Flash. Regardless of the condition mask result, it will remain active until the User Command Error bit in the Event
Status register is cleared.

4.14.3 Disabling PWM Output

The final condition that can be programmed using a mask is PWM output. The table in Section 4.14, “Programmable
Conditions,” on page 47 is used to determine the correct mask value. The command that is used to program this mask
is SetConditionMask. This value can be read using the command GetConditionMask.

In this case, if the defined condition becomes true, then PWM output will be put in high impedance. If conditions
change such that it is no longer true, PWM output will be enabled. The PWMDisable condition mask defaults to 2000h
(Estop) and as a result Estop will disable this output if the condition mask remains unchanged.

The AmplifierDisable pin is high (active) after power-up. Once a command that defines the control mask for this
pin has been sent (SetConditionMask), normal processing of the AmplifierDisable pin condition begins, which
usually (if none of the conditions are present) will result in the signal becoming inactive (low). This special pro-
cessing of the AmplifierDisable pin insures that the AmplifierDisable pin is not brought inactive until the chip has
completed its power-up sequence, or if using the serial port, until the user has sent the SetConditionMask com-
mand for the AmplifierDisable pin mask.

When the AmplifierDisable pin is active, the MC73110 is held in a dormant state equivalent to SetLoopMode
= 0 (all loops disabled).

The PWM outputs will be tri-stated if either the PWMOutputDisable input pin is active or the PWMDisable con-
dition is active.
48 MC73110 Product Manual

Theory of Operations 4
4.14.4 Condition Mask Diagram

The following diagram provides an overview of the programmable triggers for the condition masks and the
subsequent effect.

Er
ro

r
D

is
ab

le
PW

M

C
ap

tu
re

M
ot

io
n

Er
ro

r

Si
gn

al
St

at
us

La
tc

h
Ev

en
t

A
m

pl
ifi

er
D

is
ab

le

O
ve

r
Te

m
p

Es
to

p

O
ve

rV

U
nd

er
V

Si
gn

al
St

at
us

D
is

ab
le

Lo
op

s

A
m

pl
ifi

er
D

is
ab

le
Si

gn
al

H
i-Z

 P
W

M

PW
M

O
ut

pu
t

D
is

ab
le

Si
gn

al

A
m

pl
ifi

er

A
ct

iv
ity

St
at

us
MC73110 Product Manual 49

Theory of Operations4
4.15 Temperature Sensor

The MC73110 supports the ability to input temperature data from an I2C compatible temperature sensor. These are
available from a number of vendors. Typically, such a sensor would be placed on or near critical amplifier components
such as MOSFETs or IGBTs to guard against overtemperature conditions.

Although several sensors are supported, the MC73110 is certified to work with the Burr-Brown TMP100 digital
temperature sensor with I2C interface.

The sensor is connected to the MC73110’s I2C bus (pins I2CClk and I2CData). The temperature sensor’s address must
be set to 48h. The following table summarizes the I2C addresses used by the MC73110.

After reset, the MC73110 will use the I2C bus to configure the sensor for 12-bit resolution.

4.15.1 Overtemperature Detection

The temperature sensor is sampled approximately every 50 cycle times, and compared against an overtemperature set
point. To read the current value from the temperature sensor, the command GetTemperature is used. To set the
overtemperature value, the command SetTemperatureLimit is used. To read this value, the command
GetTemperatureLimit is used.

The value returned by the I2C sensor is expected to be a two’s complemented signed 16-bit word. It is the responsibility
of the user to determine the scaling of the temperature sensor and the correct comparison value to load into the
Temperature Limit register. The limit value comparison will be performed after the raw value from the sensor is shifted
right by four.

The default value of the temperature limit is 7FFFh. If the overtemperature set point is exceeded, or if there is an error
reading the data from the I2C sensor, then the Overtemperature bit in the Activity Status register will be set. This bit
can be used as a trigger to disable the amplifier, or to inhibit PWM generation. See Section 4.14, “Programmable
Conditions,” on page 47 for more information.

MC73110-Attached
Device

I2C Device
Address

Temperature Sensor 48h
Serial EEPROM 50h

For future product versions: currently, the MC73110 is certified to work only with the parts and addresses shown
in the preceeding table. Additional commands could be required if different parts and addresses are used. For de-
tails, contact PMD

If no temperature sensor is present, then the Overtemperature bit in the Activity Status register is always set .
50 MC73110 Product Manual

Theory of Operations 4
4.16 Bus Voltage Sensor

The MC73110 supports the ability to monitor the bus voltage using an analog input, which feeds an internal 10-bit A/
D converter. In order to use this functionality, not only must the bus voltage be connected to the Bus Voltage input,
but also AnalogVCC, AnalogGND, AnalogRefHigh, and AnalogRefLow must be connected.

The bus voltage is monitored using the GetBusVoltage command. The value returned is an unsigned 16-bit value,
representing the voltage on the BusVoltage pin. The scaling is:

ReadValue = 65535*(BusVoltage-AnalogRefLow)(AnalogRefHigh-AnalogRefLow)

Assuming AnalogRefHigh is 3.3V and AnalogRefLow is 0V, this is simply:

ReadValue = 65535 * BusVoltage pin/3.3V

To relate this value to the actual bus voltage, the gain of the bus voltage sensor must be taken into account. This gain
should be chosen so that the maximum operating voltage results in a BusVoltage pin value of about 50% between
AnalogRefHigh and AnalogRefLow. This will allow room for overvoltage and undervoltage detection, and provide
good resolution in bus voltage readings.

For example, assuming a maximum nominal operating voltage of 48 volts and AnalogRefHigh=3.3V and
AnalogRefLow=0V, the gain should be:

SensorGain = 0.5 * (3.3V – 0V)/48V = 0.034375 V/V

With the SensorGain taken into account, the bus voltage reading, in terms of actual bus voltage, is (assuming
AnalogRefHigh=3.3V and AnalogRefLow=0V):

ReadValue = 65535 * Bus voltage * SensorGain/3.3V

or

Bus voltage = (ReadValue * 3.3V)/(65535 * SensorGain)

Note that, unlike the other analog inputs supported by the MC73110, the BusVoltage input is not bipolar, so no bias
should be applied. Also, unlike the other analog inputs, the offset cannot be adjusted.

4.16.1 Over- and Undervoltage Detection

The bus voltage is sampled every 51.2us, passed through a low-pass filter, and compared against overvoltage and
undervoltage limits. If the bus voltage exceeds the overvoltage limit, the Overvoltage bit in ActivityStatus is set. If the
bus voltage reading is less than the undervoltage limit, the Undervoltage bit in ActivityStatus is set. Both of these bits
in ActivityStatus can be used for any of the condition masks. For example, they can trigger disabling of the amplifier
or PWM generation.

To configure the overvoltage and undervoltage limits, the SetBusVoltageLimits command is used. The range and
scaling of these settings is identical to the value read using GetBusVoltage. The defaults for the overvoltage and
undervoltage limits are 65535 and 0, respectively. If the bus voltage monitoring functionality is not used, leaving these
limits at their defaults will guarantee that the over- and undervoltage conditions will never be detected.

4.17 Serial Port

The MC73110 can communicate with a host microprocessor, PC, or other controller through an asynchronous serial
port. During development prototyping, it is very convenient to use the serial port, along with PC-based programs
provided by PMD to exercise the MC73110, experiment with gain values, and measure system performance. During
MC73110 Product Manual 51

Theory of Operations4
actual product operation, the chip may still be controlled via the serial port. Alternatively, the boot serial EEPROM
or internal Flash facility can be used to load parameter information, and no serial port is needed.

Whether the serial port will be used depends on the usage of the MC73110’s internal profile generator, and on whether
additional information regarding the motor’s operating state is needed. For all features other than the profile mode,
the chip may be operated without serial port communication. However, using these features in no way eliminates the
ability to use the serial port for monitoring or other purposes.

4.17.1 Command Packets

The chip accepts commands from the host in a packet format. By sending sequences of commands, the host can
control the behavior of the motion system as desired, and monitor the status of the chip and the motor.

A packet is a sequence of transfers to and/or from the host, which results in a chip action or data transfer. Packets can
consist of a command with no data, a command with associated data that is written to the chip, or a command with
associated data that is read from the chip.

All commands with associated data (read or write) have one, two, or three words of data. If a read or a write command
has two words of associated data (a 32-bit quantity), the high word is loaded/read first, and the low word is loaded/
read second.

The command format used to communicate between the host and chip consists of a command packet sent by the host
processor followed by a response packet sent by the chip.

Command packets sent by the host contain the following fields.

In response to the command packet, the chip will respond with a packet of the following format.

Field Byte No. Description
Address 1 One byte identifying the chip to which the command packet is being

sent. This field should always be zero in point-to-point mode.
Checksum 2 One byte value used to validate packet integrity. See Section 4.17.3,

“Checksums,” on page 53 for details.
— (Reserved) 3 Always contains 0.
Instruction code 4 A one-byte instruction. See Chapter 5, “Instruction Reference,” on

page 67 for more information.
Data (optional) 5–8 Zero to four bytes of data, sent most significant byte (MSB) first. See

the individual command descriptions for details on data required for
each command.

Field Byte No. Description
Status 1 Zero if the command was completed correctly; otherwise an error

code specifying the nature of the error. See Section 4.17.2, “Host I/O
Errors,” on page 53 for a description of these errors.

Checksum 2 One byte value used to validate the packet’s integrity. See Sec-
tion 4.17.3, “Checksums,” on page 53 for a description.

Data (optional) 3–6 Zero to four bytes of data. No data will be sent if an error occurred in
the command (i.e., the status byte was non-zero). If no error
occurred, then the number of bytes of data returned would depend
on the command to which the chip was responding. Data is always
sent most significant byte (MSB) first.
52 MC73110 Product Manual

Theory of Operations 4
4.17.2 Host I/O Errors

There are a number of checks that the chip makes on the command sent to the chip. These checks improve safety of the
motion system by eliminating some obviously incorrect command data values. All checks associated with host I/O
commands are referred to as host I/O errors. All unspecified codes are reserved.

Serial Packet Example: GetLoopIntegral command

The use of asynchronous serial communication implies that each transmission byte will be wrapped in a frame
containing extra bits for the start bit, parity bit and stop bit. Since these extra bits are always present in every frame,
they will not be shown in the following example.

When using the GetLoopIntegral (velocity loop) command, the host must send six (6) frames to the MC73110, as
shown in the following table:

The host will then receive a response from the MC73110, which also contains six frames. The six response frames are
detailed in the following table.

These frames can be combined to form a single 32-bit value (024E7A00h). Chapter 5, “Instruction Reference,” on
page 67 shows that the value returned by this command is scaled by 1/28. Therefore, the returned decimal value is
151,162 counts.

4.17.3 Checksums

Both command and response packets contain a checksum byte. The checksum is used to detect transmission errors,
and allows the chip to identify and reject packets which have been corrupted during transmission, or which were not
properly formed.

Code Indication Cause
0 No error No error condition.
1 73110 reset Default value of error code on reset or power-up.
2 Invalid instruction Instruction is not valid in the current context, or an illegal instruction code has been

detected.
4 Invalid parameter The parameter value sent to the motion processor was out of its acceptable range.

9 Bad checksum The checksum compiled and returned by MC73110 does not match that sent by the
host.

Frame
Number Data
1 00h (address byte)
2 C2h (checksum)
3 00h
4 3Dh (op code)
5 00h
6 01h (velocity loop)

Frame
Number Data
1 00h (status)
2 36h (checksum)
3 02h
4 4Eh
5 7Ah
6 00h
MC73110 Product Manual 53

Theory of Operations4
Any command packets sent to the chip containing invalid checksums will not be processed. This will result in a data
packet being returned which contains an error status code.

The serial checksum is calculated by summing all bytes in the packet (not including the checksum), and negating (i.e.,
taking the two’s complement of) the result. The lower eight bits of this value are used as the checksum. To check for
a valid checksum, all bytes of a packet should be summed (including the checksum byte). If the lower eight bits of the
result are zero, then the checksum is valid.

For example, if a command packet is sent to chip address 3, containing instruction code 77h (SetMotorCommand)
with the one word data value 1234h, then the checksum will be calculated by summing all bytes of the command packet
(03h + 00h + 77h + 12h + 34h = C0h) and negating this to find the checksum value (40h). On receipt, the chip will
sum all bytes of the packet and if the lower eight bits of the result are zero, then it will accept the packet (03h + 40h
+ 00h + 77h + 12h + 34h = 100h).

4.17.4 Baud Rate and Protocol

The MC73110 may be configured to operate at baud rates ranging from 1200 baud to 460,800 baud. In addition, it
may be operated in point-to-point serial mode, or multi-drop idle-line mode. To set the serial port configuration, the
command SetSerialPortMode is used. To read this value, the command GetSerialPortMode is used.

The following table shows the values of various parameters set using the SetSerialPortMode command.

The default configuration of the serial port is point-to-point, 57,600 baud, 1 stop bit, no parity. To change this, a
SetSerialPortMode command can be sent while communicating by the serial port (which means the communication
parameters of the host’s serial port must also be changed to further communicate). This information may also be
loaded during the power-up procedure by using either the serial EEPROM or the Flash mechanism.

Parameter Encoding
Transmission
Rate Selector

0
1
2
3
4
5
6
7

1200 bits per second
2400 bps
9600 bps
19,200 bps
57,6000 bps
115,200 bps
230,400 bps
460,800 bps

Parity Selector 0
1
2
3

None
Odd parity
Even parity
Reserved (do not use)

Number of Stop Bits 0
1

1 stop bit
2 stop bits

Protocol Type 0
1
2
3

Point-to-point
Reserved (do not use)
Reserved (do not use)
Multi-drop (idle line mode)

— (Reserved) -
Multi-drop
Address Selector. Should be zero in
point-to-point mode.

0
1

31

Address 0
Address1

Address 31

Multi-drop support requires unique addresses for each mode on the network. The serial EEPROM mechanism is
the best way to store these addresses.
54 MC73110 Product Manual

Theory of Operations 4
4.17.5 Control Signals

Three signals, SerialXmt, SerialRcv, and SerialEnable mediate serial transfers. SerialXmt encodes data transmitted from
the chip to the host processor. SerialRcv receives data sent from the host to the chip. SerialEnable output goes active
(high) when data is being transmitted in multi-drop mode. This signal may be connected to the output enable pin of
a serial buffer IC to allow tri-stating of the transmit line of a serial bus when not in use. In point-to-point mode, the
SerialEnable pin is always active (high).

The basic unit of serial data transfer (both transmit and receive) is the asynchronous frame. Each frame of data consists
of the following components.

• One start bit.

• Eight data bits.

• An optional even/odd parity bit.

• One or two stop bits.

This data frame format is shown in Figure 4-17.

Figure 4-17:
Typical data
frame format

4.17.6 Transmission Protocols

Two serial transmission protocols are supported to resolve timing problems, transmission conflicts, and other issues
that may occur during serial operations. These are: point-to-point (used when there is only one device connected to
the serial port) and multi-drop idle-line mode (used when there are multiple devices on the serial bus). The latter
method supports more than one chip on a serial bus, thereby allowing a chain, or network of chips to communicate
on the same serial hardware signals. The following sections describe these transmission protocols.

4.17.7 Point-to-point Mode

Point-to-point serial mode is intended to be used when there is a direct serial connection between one host and one
chip. In this mode, the address byte is not used by the chip (except in the calculation of the checksum), and the chip
responds to all commands sent by the host.

When in point-to-point mode, there are no timing requirements on the data transmitted within a packet. The amount
of data contained in a command packet is determined by the instruction code in the packet. Each instruction code has
a specific amount of data associated with it. When the chip receives a packet, it waits for all data bytes to be received
before processing the packet. The amount of data returned from any command is also determined by the instruction
code. After processing a command, the chip will return a data packet of the necessary length.

When running in point-to-point mode, there is no direct way for the chip to distinguish the beginning of a new
command packet, except by context. Therefore, it is important for the host to remain synchronized with the chip when
sending and receiving data. To ensure that the processors stay in synchronization, it is recommended that the host
processor implement a time limit when waiting for data packets to be sent by the chip. The suggested minimum
timeout period is the amount of time required to send one frame at the selected baud rate plus one millisecond. For
example, at 9600 baud each bit takes 1/9600 seconds to transfer, and a typical frame consists of 8 data bits, 1 start bit,

LSB 2 3 4 5 6 7 MSB Parity StopStart
MC73110 Product Manual 55

Theory of Operations4
and 1 stop bit. Therefore, one frame takes just over 1 millisecond, and the recommended minimum timeout is 2
milliseconds.

If the timeout period elapses between frames of received data while the host is waiting on a data packet, then the host
should assume that it is out of synchronization with the chip. To resynchronize, the host should send a frame
containing zero data and wait for a data packet to be received. This process should be repeated until a data packet is
received from the chip, at which point the two processors will be synchronized.

4.17.8 Multi-drop Protocol

Multi-drop mode is intended to be used on a serial bus in which a single host processor communicates with multiple
chips (or other subordinate devices). In this mode, the address byte which starts a command packet is used to indicate
for which device the packet is intended. Only the addressed device will respond to the packet. Therefore, it is
important to properly set up the chip address (using the serial configuration word described above), and to include
this address as the first byte of any command packet destined for the chip.

Because the address that starts a command packet is used to enable or disable the response from a chip in multi-drop
mode, the multi-drop protocol must include a method to avoid losing synchronization between the host and the chip,
because it would be difficult to regain synchronization in this environment. The method supported by the MC73110
is Idle Line mode.

Note that the multi-drop protocol may also be used when the host and chip are wired in a point-to-point configuration
as long as the host always transmits the correct address byte at the start of a packet. It will also follow any additional
rules for the selected protocol. This mode of operation allows the host to be sure that it will remain synchronized with
the chip without implementing the timeout and re-synch procedure previously outlined.

When the idle-line multi-drop protocol is used, the chip imposes tight timing requirements on the data sent as part of
a command packet. In this mode, the chip will interpret the first byte received after an idle period as the start of a new
packet. Any data already received will be discarded.

The timeout period is equal to the time required to send ten bits of serial data at the configured baud rate (roughly 1
millisecond at 9600 baud for example). If a delay of this length occurs between bytes of a command packet, then the
bytes already received will be discarded, and the first character received after the delay will be interpreted as the address
byte of a new packet.

4.18 Incremental Encoder Input

Incremental encoder input is supported by the MC73110 along with an index pulse and associated high speed capture
system. Two square-wave signals: QuadA and QuadB are expected to be offset from each other by 90°, as shown in
Figure 4-18 on page 57.
56 MC73110 Product Manual

Theory of Operations 4
Figure 4-18:
QuadA, QuadB,
and Index
signals

When the motor moves in the positive direction, QuadA should lead QuadB. This allows the quadrature incremental
position to be properly registered by the chip. When the motor moves in the negative direction, QuadB should lead
QuadA. Because of the 90° offset, four resolved quadrature counts occur for one full phase of each A and B channel.

4.18.1 Actual Position Register

The chip continually monitors the position feedback signals, and accumulates a 32-bit position value called the Actual
Position. Upon power-up, the default Actual Position is zero. The Actual Position can be explicitly set using the
command SetActualPosition, and can be retrieved using the command GetActualPosition.

4.18.2 High Speed Position Capture

The MC73110 supports a high-speed position capture function that allows the instantaneous axis location to be
captured, triggered by the index signal. A capture will be triggered when the index signal transitions to a high or low
state (defined by the Signal Sense register using the SetSignalSense command). See Section 4.13.4, “Signal Sense
Mask,” on page 46 for a description of the functionality of the SetSignalSense function.

 The default value for the index sense mask is 0, meaning this signal is active low. In this condition, a capture will be
recognized when index transitions low. Any change to the sense mask from active low interpretation to active high
interpretation will cause a corresponding change in recognition of the trigger condition. When a capture is triggered,
the contents of the actual position registers are transferred to the Position Capture register, and the capture-received
indicator (Bit 3 of the Event Status register) is set. See Section 4.13, “Status Words,” on page 44 for more information
on the Event Status register. To read the capture register, the command GetCaptureValue is used. The capture
register must be read before another capture can take place. Reading the Position Capture register causes the trigger
to be re-armed, meaning that subsequent captures can occur. To clear the position capture indicator for all Event
Status register bits, the command ResetEventStatus is used.

4.19 Serial EEPROM

To facilitate use of the MC73110 as a dedicated amplifier chip without need for communication from a host, a serial
EEPROM is supported which can be used to load operational parameters into the chip before operation. Typically,
after prototyping of your product with the MC73110, you will use one of the PMD software utilities to automatically
build a serial EEPROM file, which can then be programmed and installed on the production product card.

~Index
QuadB

QuadA
MC73110 Product Manual 57

Theory of Operations4
A single generic I2C bus serial EEPROM device is supported. This device must be located at address 50h. See the table
in Section 4.15, “Temperature Sensor,” on page 50 for more information on I2C.

After power-up or reset, the MC73110 interrogates the I2C bus to determine if a serial EEPROM is present. If an
EEPROM is present, the MC73110 will begin reading data from the EEPROM. The data is interpreted as command
packets in a similar format to the serial port command packets. After this process is complete, and the entire EEPROM
has been read, normal chip processing will begin.

As each command is read from the EEPROM, the checksum for the command is validated prior to executing the
command. If any command is corrupt, or if processing the command results in an error, the process is aborted. If this
happens, the User Command Error bit is set in Event Status register, and the amplifier disable output is driven active.
If the MC73110 is connected to a host using the serial port, the host can proceed by manually configuring the
MC73110 and then clearing the User Command Error bit. Otherwise, the corrupt EEPROM or MC73110 Flash
memory must be corrected before the MC73110 can be used.

4.19.1 EEPROM Command Format

The host commands stored in the EEPROM are expected to have a byte-oriented packet format very similar to the
commands sent by the serial port. The only difference is that the address byte is always zero. In addition, there is no
response packet in the Serial EEPROM initialization mode. Finally, to end the packet sequence, the last command
should be the NoOperation command. This sequence indicates to the MC73110 that the packet sequence is
completed.

For your convenience, PMD has a feature in Pro-Motor to convert MC73110 commands into a programming file
suitable for a serial EEPROM. Refer to the MC73110 Developer’s Kit Manual.

The following table shows the expected format in the serial EEPROM.

4.19.2 Storing User Commands to FLASH

In applications where a host processor is used for communications with the MC73110, an alternate method may be
used to load operational parameters to replace the reset defaults. This method uses a region of the on-chip Flash
memory of the MC73110 to store user commands to set the parameters. Similar to the method using the external
EEPROM, the commands are stored in the Flash in command packet format. When the MC73110 boots up, it
processes the command packets from the flash, modifying the indicated parameters from their reset defaults. A
checksum is computed over each command packet, and the validity of the opcode and number and range of
parameters checked. If any command packet fails these tests then flash command processing terminates and the User
Command Error bit of the Event Status word is set. See Section 4.13, “Status Words,” on page 44 for more
information on the Event Status word.

Approximately 8000 bytes of flash are avalaible, enough to store all the commands required for setting every parameter
on the chip.

To configure the Flash with user commands, the StoreUserData command is used. This command can only be sent
when AmplifierDisable output is active.

Field Byte No. Description
Address 1 Should always be zero.
Checksum 2 One byte value used to validate packet data.
Instruction
number

3–4 Two byte instruction, sent upper byte (axis number) first. The axis number
should always be set to zero.

Data
(optional)

5–8 Zero to four bytes of data, sent most significant byte (MSB) first. See the indi-
vidual command descriptions for details on data required for each command.
58 MC73110 Product Manual

Theory of Operations 4
After this command is issued, the host streams the desired command packets over the serial port to the MC73110.
Prior to the first command, the host sends a word containing the total number of bytes that will follow. The final
command in the sequence is required to be the NoOperation command. The format for each command packet is the
same as that which is used for the EEPROM method. See the table in Section 4.19.1, “EEPROM Command Format,”
on page 58 for details.

Upon receiving the StoreUserData command, and after receiving each byte of data that follows, the MC73110
responds by sending a null byte over the serial port. The timeout that the host uses for this handshake should be fairly
long (for example, 10ms), as the StoreUserData command involves erasing and writing the Flash memory in the chip.
Upon receiving the last byte of data, the MC73110 does not respond. Instead, it resets, so care should be taken in re-
establishing serial communications after this sequence.

For example, to configure the MC73110 to boot with a sample time of 256 µs and a LoopMode of 1 (current loop
only), the following sequences would be used (all data in hex).

4.20 Synchronous Serial Input (SPI Port)

There are two options for providing a continuous hardware-level velocity or torque command to the MC73110. The
first is an analog voltage present at pin AnalogCmd. The other is the SPI port located at pins DigitalCmdData and
DigitalCmdClk. Because the SPI port is digital, and because it has a 16-bit resolution, versus the internal MC73110’s
A/D 10-bit resolution, this is the preferred method when using the MC73110 in this mode.

The velocity commands input by the SPI port consists of a sequence of offset binary (0 = –max, 8000h = 0, FFFFh
= +max) 16-bit numbers without further protocol layering. The data should be sent MSB (most significant bit) first.
At the maximum SPI input rate of 10 MHz, a complete 16-bit digital word can be transferred in 1.6 µSec. See Figure 3-
4 on page 16 for more information.

Most motion systems which can output an SPI data stream will do so at a regular rate. Usually, this is the servo loop
rate, which is once per 100 µsec or slower. If the hardware system will be sending out SPI data at a higher rate, the

Bytes Sent MC73110 Response
00 (ADR—can be non-zero if multidrop) No response
8F (Checksum of command packet) No response
00 No response
71 (StoreUserData command) 00 (if AmpliferDisable active)
00 (number of bytes to follow high) 00
10 (number of bytes to follow low) 00
00 00
C7 (Checksum) 00
00 00
38 (SetSampleTime) 00
01 (256 high byte) 00
00 (256 low byte) 00
00 00
90 (Checksum) 00
00 00
6F (SetLoopMode) 00
00 (1 high byte) 00
01 (1 low byte) 00
00 00
00 (Checksum) 00
00 00
00 (NoOperation command) No response; performs reset.
MC73110 Product Manual 59

Theory of Operations4
total rate should be limited to one update every 25 µsec. Note that the default sample time for the MC73110 is 102.4
µsec. Sending SPI data at a higher frequency than 102.4 µsec will have no effect, as 102.4 µsec is the maximum update
rate.

Once the 16-bit command is input at the SPI port, it is made available to either the velocity loop, commutator module,
or velocity integrator, depending on the loop configuration.

4.20.1 SPI Command Synchronization

Since the MC73110 does not have a chip select for its SPI input, care should be taken to insure the integrity of the SPI
clock. In normal SPI mode, extra or missing SPI clocks can cause permanent loss of sychronization in the SPI data
stream, and hence erroneous commands being received by the MC73110. These extra or missing clocks can be caused
by noise or excessive capacitive loading on the SPI clock signal. The system design should take all precautions to
guarantee a clean SPI clock.

To enhance SPI integrity, a special mode can be enabled that allows the MC73110 to recover synchronization in the
SPI data stream in the case of missing or extra SPI clocks. This mode is enabled using the SetSPISyncMode
command. This mode should only be used if the SPI data stream meets the following timing requirements:

l SPI clock rate at least 1MHz
l SPI command rate is 10 kHz or less
l SPI commands are issued at constant rate

While there can be some jitter in the SPI command rate, the critical requirement is that there is always at least 51.2
µsec between the end of the previous SPI command and the beginning of the next one.

4.21 Analog Signal Processing

Four direct analog signals may be input to the MC73110. These signals are summarized in the following table.

Each of these signals are converted internally in the MC73110 using a 10-bit A/D. To read these signals, the command
GetAnalog is used. To offset these values, the commands SetAnalogOffset and GetAnalogOffset are used.

If one or more of these analog signals are being used, a number of additional signals must also be connected. These
signals are summarized in the following table.

The A/D output is monotonic from –32,736 (8020h) to 32,736 (7FE0h) when the input signal is between the analog
low and high voltage reference. When the input signal is higher than analog high reference voltage, the A/D output is
32,736 (7FE0h); when the input signal is lower than the analog low reference voltage, the A/D output is –32,736
(8020h).

Signal Name Function
CurrentA Phase A instantaneous current through motor coil.
CurrentB Phase B instantaneous current through motor coil.
AnalogCmd Desired velocity or torque command input to velocity loop.
Tachometer Instantaneous motor velocity, generally derived from a tachometer

Signal Name Function
AnalogVcc Provides 3.3V power to on-chip analog circuitry.
AnalogGnd Provides return path for on-chip analog circuitry.
AnalogRefHigh Provides high voltage level for A/D circuitry. Usually connected to 3.3V supply.
AnalogRefLow Provides low voltage level for A/D circuitry. Usually connected to analog return (0.0 V).
60 MC73110 Product Manual

Theory of Operations 4
Variations in the analog high and analog low reference must be less than half LSB of the target resolution (A/D
conversion resolution) during the conversion time in order to ensure the specified performance.

4.21.1 Analog Signal Range & Representation

The voltages presented at the four analog input pins (CurrentA, CurrentB, AnalogCmd, Tachometer) must always be
positive, ranging at their lowest value from AnalogRefLow, to their highest value AnalogRefHigh. These analog signals
are assumed to represent bipolar, symmetric values (centered around zero volts), so the voltages present at these pins
are interpreted as follows.

A voltage of AnalogRefLow is the smallest possible negative voltage. A voltage of AnalogRefHigh is the largest
possible positive voltage. A value of (AnalogRefHigh-AnalogRefLow)/2 represents a value of zero volts. When
presenting bipolar signals, such as the current through each motor coil to the MC73110 input pins corresponding to
those signals, the appropriate external circuitry should be installed to shift and rescale those signals.

4.21.2 Converting Voltages to Values

Assuming that AnalogRefHigh is 3.3V, and AnalogRefLow is 0.0V, to determine the numerical value that will be read
by the motion processor given a specific voltage at the MC73110's input pin, the following formula is used.

ReadValue = (32,736 * AnalogVoltage /1.65V) – 32,736

For example, if the analog voltage is 3.3V, the read value will be 32736 (7FE0h). If the analog voltage is 0.0V, the read
value will be –32736 (8020h), and if the analog voltage is 1.65V, the read value will be 0 (zero).

Conversely, given a read value, the voltage at the connection is calculated as:

AnalogVoltage=1.65V*(ReadValue+32,736)/32,736

4.21.3 Current Sensing

A special instance of analog input occurs for the CurrentA and CurrentB signals. While the input voltage range is the
same (from AnalogRefLow to AnalogRefHigh), the sense of the provided current signals must be correct for current
sensing to function properly. This sense is non-reversed, meaning that a positive voltage output at the PWM coil
(greater than 50% duty cycle) should result in a positive current signal being fed back to the chips. Depending on the
type of op amps used in the circuit, it is not unusual for this sense to be reversed. Care should be taken to ensure that
the relationship between the voltage output and current feedback is correct. A positive voltage potential should be
generated on the respective motor winding when GetPWMCommand is negative.

4.21.4 PWMOutputDisable Signal

Under certain error conditions, it may be desirable to immediately disable the PWM output. A dedicated input is
provided for this function. The hardware designer must include circuitry external to the MC73110 for determining if
PWM output should be disabled. ~PWMOutputDisable is an active low signal, and when brought low will
immediately tri-state all PWM output signals. When the signal is in the high state, PWM output is enabled and operates
normally. In designs where this signal is not used, it may remain unconnected.
MC73110 Product Manual 61

Theory of Operations4
4.22 GetLoop Commands and Variables

4.22.1 Read Loop Variables

The MC73110’s flexible control loop structure may be configured in a number of ways. When it is enabled, the control
loop filter will calculate the output based on variables such as instantaneous error and error integral. These loop
variables may be read at any time using the commands GetLoopCommand, GetLoopError, and GetLoopIntegral.
Each control loop is assigned a unique loop ID so that these commands may be applied to all loops.

4.22.2 Read Variables in the Current Loop

There are two current loops: CurrentA regulates the current in motor coil A, and CurrentB regulates the current in
motor coil B. When FOC is used, the current loops are CurrentD, which regulates the direct, or magnetization cur-
rent, and CurrentQ, which regulates the Quadrature, or torque producing current.

Figure 4-19 shows how the current loop variables can be read.

Figure 4-19:
The current
loop

Figure 4-19 represents the filter equation described in Section 4.6.1, “Current Loop Filter,” on page 30 and the dashed
arrow lines show the location to which the returned value corresponds in the filter calculation. For example,
GetLoopCommand 2 returns the loop command of loop CurrentA or CurrentD. GetLoopError 3 returns the loop
error of loop CurrentB or CurrentQ.

Loop ID Loop
2 CurrentA

Current D (with FOC)
3 CurrentB

CurrentQ (with FOC)

Integral/256
with Limit

Current
Actual

1: GetLoopCommand 2/3

+

CurrentKp/64

CurrentKi

2: GetLoopError 2/3
3: GetLoopIntegral 2/3

1 2 3

Current
Desired -+

+

offset

LoopID
2 = CurrentA or CurrentD
3 = CurrentB or CurrentQ
62 MC73110 Product Manual

Theory of Operations 4
GetLoopCommand 2 and GetLoopCommand 3 return the desired current for CurrentA or CurrentD and
CurrentB or CurrentQ respectively, which are also the output values of the commutation portion. See Section 4.7,
“Commutation,” on page 32 for detailed information. The returned value is a signed 16-bit number.

GetLoopError 2 and GetLoopError 3 return current error for CurrentA or CurrentD and CurrentB or CurrentQ,
respectively. The returned value is a signed 16-bit number.

GetLoopIntegral 2 and GetLoopIntegral 3 return the integrated current error with a scaling of 1/28, which is:

for CurrentA or CurrentD and CurrentB or CurrentQ, respectively. The returned value is a signed 16-bit number.

4.22.3 Read Variables in the Velocity Loop

The loop ID of the velocity loop is 1. With loop ID 1 specified, the velocity loop variables may be read, as shown in
Figure 4-20.

Figure 4-20:
The velocity
loop

Figure 4-20 represents the filter equation in Section 4.9.3, “Velocity Loop Filter,” on page 38 and the dashed arrow
lines shows the location to which the returned value corresponds in the filter calculation. For example,
GetLoopCommand 1 returns the desired velocity of the velocity loop.

256
0
∑
=

n

j
jCE

Integral/256
with Limit

1: GetLoopCommand 1

+

VelocityKp/64

VelocityKi

2: GetLoopError 1
3: GetLoopIntegral 1

1 2 3

LoopID = 1

Velocity
Actual

Velocity
Desired -+

65536
Velocity
Scalar

65536
Velocity
Scalar

65536
Velocity
Scalar
MC73110 Product Manual 63

Theory of Operations4
When the CommandSource is set to ProfileGenerator, GetLoopCommand 1 returns the desired velocity of the
velocity loop without velocity scalar. The returned value is a signed 32-bit number in 16.16 format. The result does
not include the velocity scalar; therefore, it has the same unit as the feedback signal. If the feedback signal is from the
encoder, the returned value is the desired velocity in counts per cycle. For example, a velocity command of 123,863
corresponds to a velocity of 123,863/65,536, or 1.89 counts/cycle. If the feedback signal is from the tachometer, the
returned value is the desired A/D value of the tachometer signal, divided by the velocity scalar.

When the CommandSource is set to AnalogCmd or SPI, GetLoopCommand 1 returns the value as a signed 32-bit
number in 16.16 format with the velocity scalar divided out.

When the VelocityFeedbackSource is set to encoder then GetLoopError 1 returns the velocity error without
velocity scalar. The returned value is a signed 32-bit number in 16.16 format. The result does not include the velocity
scalar; therefore, it has the same unit as the feedback signal. If the feedback signal is from the encoder, the returned
value is the velocity error in counts per cycle. For example, a velocity error of 234,618 corresponds to a velocity error
of 234,618/65,536, or 3.58 counts/cycle. If the feedback signal is from the tachometer, the velocity error is in the unit
of the digitalized tachometer signal, divided by the scalar.

GetLoopIntegral 1 returns the integrated velocity error with a scaling of 1/28 , which is:

with the velocity scalar. The returned value is a signed 32-bit number.

GetActualVelocity returns the velocity being measured by the velocity feedback device in a signed 16.16 format.
When the VelocityFeedbackSource is set to Encoder the returned value is “counts/cycle” in a 16.16 format. When
the VelocityFeedbackSource is set to Tachometer the returned value is a signed 16.16 format divided by the Velocity
Scalar.

4.22.4 Read Variables in the Velocity Integrator
Loop

The loop ID of the velocity integrator loop is 0. With loop ID 0 specified, the velocity integrator loop variables may
be read, as shown in Figure 4-21 on page 65.

256
0
∑
=

n

j
jVE

64 MC73110 Product Manual

Theory of Operations 4
Figure 4-21:
The velocity
integrator loop

Figure 4-21 represents the filter equation in Section 4.10.1, “Velocity Integrator Loop Filter,” on page 41 with the
velocity integrator, and the dashed arrow lines shows the location to which the returned value corresponds in the filter
calculation. For example, GetLoopCommand 0 returns the input to the velocity integrator.

GetLoopCommand 0 returns the velocity command being input to the velocity integrator without the velocity scalar.
The returned value is a signed 32-bit number in 16.16 format. The result does not include the velocity scalar, and it
has a unit of count/cycle.

GetLoopError 0 returns the position error. The returned value is a signed 32-bit number in counts.

GetLoopIntegral 0 returns the integrated position error, which is:

Integral
with Limit

D

Velocity
integrator

Encoder Position Actual
1: GetLoopCommand 0

+

Kp

Ki/256

Kd

LoopID = 0
2: GetLoopError 0
3: GetLoopIntegral 0

1 2 3

Velocity
Desired -+

∑
=

n

oj
jPE
MC73110 Product Manual 65

Theory of Operations4
This page intentionally left blank.
66 MC73110 Product Manual

5
5.Instruction Reference

5.1 How to Use This Reference

In this section, instructions are arranged alphabetically; except that all “Set/Get” pairs (for example, SetVelocity and
GetVelocity) are described together. Each description begins on a new page; most occupy no more than a single page.
Each page is organized as described in the following table.

Name The instruction mnemonic is shown at the left, its hexadecimal code at the right.

Syntax The instruction mnemonic and its required arguments are shown with all arguments separated by
spaces.

Arguments There are two types of arguments: encoded-field and numeric.
Encoded-field arguments are packed into a single 16-bit data word. Bits 8–15 of the instruction
word are always 0. The name of the argument (in italic) is the name shown in the generic syntax.
Instance (in italic) is the mnemonic used to represent the data value. Encoding is the value assigned
to the field for that instance.
For numeric arguments, the parameter value, the type (signed or unsigned integer), and range of
acceptable values are given. Numeric arguments may require one or two data words. For 32-bit
arguments, the high-order part is transmitted first.

Packet Structure This is a graphic representation of the 16-bit words transmitted in the packet: the instruction,
which is identified by its name, followed by one, two, or three data words. Bit numbers are shown
directly below each word. For each field in a word, only the high and low bits are shown. For 32-bit
numeric data, the high-order bits are numbered from 16 to 31, the low-order bits from 0 to 15.
A packet consists of two serial frames.
The hex code of the instruction is shown in boldface.
Argument names are shown in their respective words or fields.
For data words, the direction of transfer—read or write— is shown at the left of the word's
diagram.
Unused bits are shaded. All unused bits must be 0 in data words and instructions sent (written) to
the motion IC.

Description Describes what the instruction does, and includes any special information relating to the instruc-
tion.

Restrictions Describes the circumstances in which the instruction is not valid; that is, when it should not be
issued.

see Refers to related instructions, information, or topics in this manual.
MC73110 Product Manual 67

5

68

5
 ClearPositionError 47h

Syntax ClearPositionError

Arguments None

Packet
Structure

Description Executing this command will reset the velocity integrator target position equal to the current position.
This command can be used when the axis is at rest, or when it is moving.

Restrictions ClearPositionError should only be used when the velocity integrator loop is enabled. If this loop is
not enabled, then this command has no effect.

see GetLoopCommand (p. 76), GetMotionErrorLimit (p. 97)

ClearPositionError
0 47h

15 8 7 0
MC73110 Product Manual

5
GetActivityStatus A6h

Syntax GetActivityStatus

Arguments None

Returned data Name Type
see below unsigned 16-bit

Packet
Structure

Description GetActivityStatus reads the 16-bit Activity Status register. Each of the bits in this register
continuously indicate the state of the motion IC without any action on the part of the host. Because
the bits in this register are controlled by the chip, there is no direct way to set or clear the state of these
bits.

The following table shows the encoding of the data returned by this command.

Restrictions

see GetEventStatus (p. 74) GetSignalStatus (p. 80)

GetActivityStatus
0 A6h

15 8 7 0
Data

read 0 0
15 12 11 10 9 8 7 6 5 0

Name Bit(s) Description

— 0–5 Reserved

Overtemperature 6 Set (1) when the overtemperature condition is active, cleared
(0) when the overtemperature condition is not active. The
overtemperature condition is controlled by the maximum
temperature register and the command SetTemperature-
Limit. This bit is also Set(1) if the temperature sensor is not
present.

PWMDisable 7 Set (1) when PWMDisable condition mask evaluates to True.

Motor Mode 8 Set (1) when motor mode is on; 0 when off.

Position Capture 9 Set (1) when a value has been captured by the high speed posi-
tion capture hardware, but has not yet been read.

Overvoltage 10 Set (1) when bus voltage exceeds the overvoltage limit.

Undervoltage 11 Set (1) when bus voltage is less than the undervoltage limit.

— 12–15 Reserved
MC73110 Product Manual 69

5

70

5
 GetAnalog 28h

Syntax GetAnalog portID

Arguments Name Instance Encoding
portID AnalogCmd 0

Tachometer 1
CurrentA 2
CurrentB 3

Returned data Type Range Scaling
signed 16-bit –215 to 215–1 unity

Packet
Structure

Description
GetAnalog returns a 16-bit value representing the voltage (read by an on-chip 10-bit A/D) presented
to the specified analog input port. The value returned is the result of summing the raw value with the
analog offset which was set using SetAnalogOffset.

Restrictions

see SetAnalogOffset/GetAnalogOffset (p. 88)

GetAnalog
0 28h

15 8 7 0
First data word

write 0 portID
15 2 0

Second data word
read value

15 0
MC73110 Product Manual

5
GetActualVelocity ADh

Syntax GetActualVelocity

Arguments None

Returned data Name Type Range Scaling Units
Actual velocity signed 32-bit –231 to 231–1 1/216 counts/cycle

Packet
Structure

Description GetActualVelocity reads the velocity. Actual velocity is determined using either the analog velocity
input, the incremental encoder input, or the Hall sensor inputs. Scaling example: if a value of 1,703,936
is retrieved by the GetActualVelocity command (high word: 01Ah, low word: 0h), this corresponds
to a velocity of 1,703,936/65,536; or 26 counts/cycle.

When the velocity feedback source is set to Tachometer, the returned value will represent the velocity
in a 16.16 format after the user multiplies the returned value by the velocity scalar.

Restrictions

see SetVelocityFeedbackSource/GetVelocityFeedbackSource (p. 117)

GetActualVelocity
0 ADh

15 8 7 0
First data word

read Actual velocity (high-order part)
31 16

Second data word
read Actual velocity (low-order part)

15 0
MC73110 Product Manual 71

5

72

5
 GetBusVoltage 40h

Syntax GetBusVoltage

Arguments None

Returned data Name Type Range
value unsigned 16-bits 0 to 2^16–1

Packet
Structure

Description GetBusVoltage gets the most recent Bus voltage reading. The scaling of the returned value depends
on the scaling used in Bus voltage sensor.

Restrictions GetBusVoltage will only return valid information if analog Bus voltage signal is connected.

see

GetBusVoltage
0 40h

15 8 7 0
Data

read value
15 0
MC73110 Product Manual

5
GetCaptureValue 36h

Syntax GetCaptureValue

Arguments None

Returned data Name Type Range Scaling Units
Captured signed 32-bit –231 to 231–1 unity counts
position

Packet
Structure

Description GetCaptureValue returns the contents of the Position Capture register, and clears the position
capture bit in the Activity Status register. This command also resets the capture hardware, allowing
another capture to occur.

Restrictions An encoder with index must be present.

see

GetCaptureValue
0 36h

15 8 7 0
First data word

read Captured position (high-order part)
31 16

Second data word
read Captured position (low-order part)

15 0
MC73110 Product Manual 73

5

74

5
 GetEventStatus 31h

Syntax GetEventStatus

Arguments None

Returned data Name Type
see below unsigned 16-bit

Packet
Structure

Description GetEventStatus reads the Event Status register. The encoding of the data returned by this command
is outlined in the following table.

Restrictions All of the bits in this status word are set by the chip and cleared by the host. To clear these bits, use
the ResetEventStatus command.

see GetActivityStatus (p. 69), GetSignalStatus (p. 80)

GetEventStatus
0 31h

15 8 7 0
Data

read 0 0 0
15 14 9 8 7 5 4 3 2 0

Name Bit(s) Description

— 0–2 Reserved

Wrap-around 1 Set(1) when the actual (encoder) position has wrapped from maxi-
mum allowed position to minimum, or vice versa.

Capture Received 3 Set(1) when a position capture has occurred.

Motion Error 4 Set(1) when a motion error has occurred.

— 5–7 Reserved

Amplifier Error 8 Set when the programmable amplifier error condition becomes true.

— 9–14 Reserved

User Command Error 15 Set (1) if error occurred processing user commands from EEPROM
or Flash after chip reset.
MC73110 Product Manual

5
GetHostIOError A5h

Syntax GetHostIOError

Arguments None

Returned data Name Type Range
see below unsigned 16-bit 0–15

Packet
Structure

Description GetHostIOError returns the code for the last host I/O error, and then resets the error to zero.

The error codes are encoded as defined in the following table.

Restrictions

see GetEventStatus (p. 74)

GetHostIOError
0 A5h

15 8 7 0
Data

read 0 error code
15 4 3 0

Error Code Encoding

No error 0

73110 Reset 1

Invalid instruction 2

— (Reserved) 3

Invalid parameter 4

— (Reserved) 5–8

Bad checksum 9

— (Reserved) 10–15
MC73110 Product Manual 75

5

76

5
 GetLoopCommand 35h

Syntax GetLoopCommand loopID

Arguments Name Type Instance Encoding (hex)
LoopID unsigned 16-bit Velocity Integrator Loop 0

Velocity Loop 1
CurrentA or D Loop 2
CurrentB or Q Loop 3

Returned data Type Range Scaling Units
Command signed 32-bit –215 to 215–1 see below see below

Packet
Structure

Description GetLoopCommand returns the input command for the selected LoopID. The following table shows
the values which are returned for each LoopID.

When the loop command source is set to Analog or SPI, the returned value will represent the velocity
reference command in a 16.16 format after the user multiplies the returned value by the velocity scalar.

Restrictions If the selected LoopID is disabled (SetLoopMode), this command will return zero.

see GetLoopError (p. 77)

GetLoopCommand
0 35h

15 8 7 0
First data word

write 0 LoopID
15 2 1 0

Second data word
read Command (high-order part)

31 16
Third data word

read Command (low-order part)
15 0

LoopID Format Range Description

Velocity Integrator Loop 16.16 –215 to 215–1 Commanded velocity.

Velocity Loop 16.16 –215 to 215–1 Commanded velocity.

CurrentA or D Loop 32.0 –215 to 215–1 Commanded current for winding #1 (when
in A/B mode) or Commanded Direct (D)
current (when in FOC mode).

CurrentB or Q Loop 32.0 –215 to 215–1 Commanded current for winding #2 (when
in A/B mode) or Commanded Quadrature
(Q) current (when in FOC mode).
MC73110 Product Manual

5
GetLoopError 2Eh

Syntax GetLoopError loopID

Arguments Name Type Instance Encoding (hex)
LoopID unsigned 16-bit Velocity Integrator Loop0

Velocity Loop 1
CurrentA or D Loop 2
CurrentB or Q Loop 3

Returned data Type Range Scaling Units
Error signed 32-bit see below see below see below

Packet
Structure

Description GetLoopError returns the error value for the selected LoopID. The following table shows the values
which are returned for each LoopID.

When the velocity feedback source is set to Tachometer, the returned value will represent the velocity
error in a 16.16 format after the user mulitiplies the returned value by the velocity scalar.

Restrictions If the selected LoopID is disabled (SetLoopMode), this command will return zero.

see GetLoopCommand (p. 76)

GetLoopError
0 2Eh

15 8 7 0
First data word

write 0 LoopID
15 2 1 0

Second data word
read Error (high-order part)

31 16
Third data word

read Error (low-order part)
15 0

LoopID Format Range Description

Velocity Integrator loop 32.0 –231 to 231–1 Position error.

Velocity Loop 16.16 –215 to 215–1 Velocity error.

CurrentA or D Loop 32.0 –215 to 215–1 Motor current error for winding #1
(when in A/B mode) or Direct (D)
current error (when in FOC mode).

CurrentB or Q Loop 32.0 –215 to 215–1 Motor current error for winding #2
(when in A/B mode) or Quadrature
(Q) current error (when in FOC
mode).
MC73110 Product Manual 77

5

78

5
 GetLoopIntegral 3Dh
l
MC73110 Product Manua

Syntax GetLoopIntegral loopID

Arguments Name Type Instance Encoding (hex)
LoopID unsigned 16-bit Velocity Integrator Loop 0

Velocity Loop 1
CurrentA or D Loop 2
CurrentB or Q Loop 3

Returned data Type Range Scaling Units
Integral signed 32-bit –215 to 215–1 see below see below

Packet
Structure

Description GetLoopIntegral returns the integrated error value for the selected LoopID. When the LoopID is set
to velocity integrator loop, the value returned is a full 32-bit value. For all other LoopIDs, the value
returned is a sign-extended 16-bit value scaled by 1/256. The same scaling factors are applied to the
integrator limit values used by Get/SetLoopGain.

GetLoopIntegral can be used to monitor loading on the axis, because changes in the axis loading can
be reflected in the values returned by this command.

Scaling example: if a constant velocity error of 100 counts is present for 256 cycles, then the total
accumulated integral value will be 100 (100*256/256). A returned value of 1,000 indicates a total
stored value of 256,000 counts (1,000*256). The following table shows the values which are returned
for each LoopID.

Restrictions If the selected LoopID is disabled (SetLoopMode), this command will return zero.

see Get/SetLoopGain (p. 94)

GetLoopIntegral
0 3Dh

15 8 7 0
First data word

write 0 LoopID
15 2 1 0

Second data word
read Integral (high-order part)

31 16
Third data word

read Integral (low-order part)
15 0

LoopID Format Range Scaling Description

Velocity Integrator Loop 32.0 –231 to 231–1 unity Integrated position error.

Velocity Loop 16.16 –215 to 215–1 1/256 Integrated velocity error divided by
the velocity scalar.

CurrentA or D Loop 32.0 –215 to 215–1 1/256 Integrated motor current error for
winding #1 (when in A/B mode) or
integrated Direct (D) current error
(when in FOC mode).

CurrentB or Q Loop 32.0 –215 to 215–1 1/256 Integrated motor current error for
winding #2 (when in A/B mode) or
integrated Quadrature (Q) current
error (when in FOC mode).

5
GetPWMCommand 30h

Syntax GetPWMCommand PhaseID

Arguments Name Type Instance Encoding
PhaseID unsigned 16-bit PhaseA 0

PhaseB 1
PhaseC 2

Returned data Phase command signed 32-bit Range Scaling Units
 –215 to 215–1 100/215 %output

Packet
Structure

Description GetPWMCommand returns the value of the motor output command for phase A, B, or C. These are
the phase values directly output to the motor, regardless of commutation mode, motor mode, or loop
mode.

Scaling example: if a value of –4,489 is retrieved (EE77h) for a given phase, then this corresponds to
–4,489*100/32,768 = –13.7 % of ful l -scale output . The s ign re lat ionship between
GetPWMCommand and the voltage polarity applied to the motor winding is reversed. For example,
a positive voltage should be present on motor terminal phase A when GetPWMCommand 0 returns
a negative value. This relationship is required for proper operation of the current loop.

Restrictions

see

GetPWMCommand
0 30h

15 8 7 0
First data word

write 0 PhaseID
15 2 1 0

Second data word
read Phase command

15 0
MC73110 Product Manual 79

5

80

5
 GetSignalStatus A4h

Syntax GetSignalStatus

Arguments None

Returned data Type
see below unsigned 16-bit

Packet
Structure

Description GetSignalStatus returns the contents of the Signal Status register. The Signal Status register contains
the value of the various hardware signals connected to the motion processor. The value read is
combined with the Signal Sense register (see SetSignalSense), and then returned to the user. For each
bit in the Signal Sense register that is set to 1, the corresponding bit in the GetSignalStatus command
will be inverted. Therefore, a low signal will be read as 1, and a high signal will be read as 0. Conversely,
for each bit in the Signal Sense register that is set to 0, the corresponding bit in the GetSignalStatus
command is not inverted. Therefore, a low signal will be read as 0, and a high signal will be read as 1.

The bit definitions are as follows.

Restrictions

see GetActivityStatus (p. 69), GetEventStatus (p. 74), SetSignalSense/GetSignalSense (p. 113)

GetSignalStatus
0 A4h

15 8 7 0
Data

read 0 0
15 14 13 12 10 9 8 7 6 3 2 1 0

Description Bit Number

QuadA 0

QuadB 1

Index 2

— (Reserved) 3–6

Hall1 7

Hall2 8

Hall3 9

— (Reserved) 10–12

Estop 13

PWMOutputDisable 14

AmplifierDisable 15
MC73110 Product Manual

5
GetTemperature 53h

Syntax GetTemperature

Arguments None

Returned data Name Type Range
Temperature signed 16-bit –215 to 215–1

Packet
Structure

Description GetTemperature returns the value read from the temperature sensor right shifted by 4.

Restrictions If no temperature sensor is present, this command returns 0. The overtemperature bit in the Activity
Status register will be Set(1).

see

GetTemperature
0 53h

15 8 7 0
Data

write Temperature
15 0
MC73110 Product Manual 81

5

82

5
 GetVersion 8Fh

Syntax GetVersion

Arguments None

Returned data Product information Encoding
Product family MC70000 7
Motor type Brushless DC 3
Axes supported 1
Number of chips Single chip 1
Customization code None 0

Other
Major s/w version 0 to 15
Minor s/w version 0 to 15

Packet
Structure

Description GetVersion returns product information encoded as shown in the preceeding packet structure
diagram.

Restrictions

see

GetVersion
0 8Fh

15 8 7 0
First data word

read product family motor type number of axes number of chips
15 12 11 8 7 4 3 0

Second data word
read customization code major s/w version minor s/w version

15 8 7 4 3 0
MC73110 Product Manual

5
NoOperation 00h

Syntax NoOperation

Arguments None

Packet
Structure

Description The NoOperation command has no effect on the IC. This command may be used to resynchronize
communications with the chip.

Restrictions

see

NoOperation
0 00h

15 8 7 0
MC73110 Product Manual 83

5
Reset 39h
84
MC73110 Product Manual

Syntax Reset

Arguments None

Packet
Structure

Description Reset restores the chip to its initial condition, setting all chip variables to their default values. The
table below lists the default values for all internal registers. If an external EEPROM or internal Flash
is used to store additional startup commands, the values shown in the following table will be
overwritten immediately following reset.

Restrictions The command response is issued prior to reset. Further communications should not be attempted
until after the reset time has elapsed.

see Section 3.4, “Timing Diagrams,” on page 15.

Reset
0 39h

15 8 7 0

Variable Name Default Value
Acceleration 0

ActualPosition 0

AmplifierDisable 0

AmplifierError 0

AnalogOffset(s) 0

AutoStopMode 1

CommandSource 0

CommutationMode 1 (Hall)

LoopGain(s) 0 (All cleared)

MotionErrorLimit 231–1

MotorCommand 0

MotorLimit 32767

MotorMode 1 (On)

OverVoltageLimit 65535

PhaseAngle 0

PhaseCounts 1

PhasePrescale 0 (Off)

PWMDeadTime 55 (12µs)

PWMLimit 31784 (97%)

PWMOutputDisable default 2000h

PWMOutputMode 0 (Six signal)

PWMSense 0 (All active low)

SampleTime 102

SerialPortMode 04h (57600 baud, NoParity, 1 stop bit)

SignalSense 0

SPISyncMode 0 (off)

Velocity 0

VelocityFeedbackSource 0 (Encoder)

VelocityScalar 3

TemperatureLimit 32767

UnderVoltageLimit 0

5
ResetEventStatus 34h

Syntax ResetEventStatus mask

Arguments Name Instance Encoding Bit number
mask Capture Received 0008h 3

Motion Error 0010h 4
Amplifier Error 0100h 8
UserCommand Error 8000h 15

Packet
Structure

Description ResetEventStatus clears (sets to 0) each bit in the Event Status register that has a value of 0 in the
mask sent with this command. All other Event Status register bits (bits which have a mask value of 1)
are unaffected. For example, setting the mask to 0018h will clear the Amplifier error and
UserCommand error bits, but will leave the capture received and motion error bit unchanged.

Restrictions

see GetEventStatus (p. 74)

ResetEventStatus
0 34h

15 8 7 0
Data

write mask
15 0
MC73110 Product Manual 85

86

5

SetAcceleration 90h
GetAcceleration 4Ch
Syntax SetAcceleration Acceleration
GetAcceleration

Arguments Name Type Range Scaling Units
Acceleration unsigned 32-bit 0 to 231–1 1/216 counts/cycle2

Packet
Structure

Description

Restrictions

see

SetAcceleration loads the maximum acceleration buffer register. This command is used when the
command source is set to profile generator.

GetAcceleration reads the maximum acceleration buffer register.

Scaling example: to load a value of 1.750 counts/cycle2, multiply by 65,536 (giving 114,688), and load
the resultant number as a 32-bit number; giving 0001 in the high word and C000h in the low word.
Values returned by GetAcceleration must be divided by 65,536 to convert to units of counts/cycle2.

SetVelocity/GetVelocity (p. 116), SetCommandSource/GetCommandSource (p. 91)

SetAcceleration
0 90h

15 8 7 0
First data word

write Acceleration (high-order part)
31 16

Second data word
write Acceleration (low-order part)

15 0

GetAcceleration
0 4Ch

15 8 7 0
First data word

read Acceleration (high-order part)
31 16

Second data word
read Acceleration (low-order part)

15 0
MC73110 Product Manual

55
SetActualPosition 4Dh
GetActualPosition 37h
Syntax SetActualPosition position
GetActualPosition

Arguments Name Type Range Scaling Units
position signed 32-bit –231 to 231–1 unity counts

Packet
Structure

Description

Restrictions

SetActualPosition loads the position register (encoder position). This instruction establishes a new
reference position from which subsequent positions can be referenced. It is used to set a known
reference position after a homing procedure.

GetActualPosition reads the contents of the encoder’s position register.

see SetVelocity/GetVelocity (p. 116), SetCommandSource/GetCommandSource (p. 91)

SetActualPosition
0 4Dh

15 8 7 0
First data word

write Position (high-order part)
31 16

Second data word
write Position (low-order part)

15 0

GetActualPosition
0 37h

15 8 7 0
First data word

read Position (high-order part)
31 16

Second data word
read Position (low-order part)

15 0
MC73110 Product Manual 87

88

5

SetAnalogOffset 29h
GetAnalogOffset 2Ah
Syntax SetAnalogOffset pordtID value
GetAnalogOffset portID

Arguments Name Type Instance Encoding
portID unsigned 16-bit AnalogCmd 0

Tachometer 1
CurrentA 2
CurrentB 3

Range Scaling
value signed 16-bit –215 to 215–1 unity

Packet
Structure

Description SetAnalogOffset sets the offset that is summed with the value at the desired portID prior to use in
chip calculations.

GetAnalogOffset returns the value of the offset for the specified port.

Restrictions

see

SetAnalogOffset
0 29h

15 8 7 0
First data word

write 0 portID
15 2 1 0

Second data word
write value

15 0
GetAnalogOffset

0 2Ah
15 8 7 0

First data word
write 0 portID

15 8 7 0
Second data word

read value
15 0
MC73110 Product Manual

55
SetAutoStopMode D2h
GetAutoStopMode D3h
Syntax SetAutoStopMode mode
GetAutoStopMode

Arguments Name Type Instance Encoding
mode unsigned 16-bit Disable 0

Enable 1

Packet
Structure

Description SetAutoStopMode determines the behavior when a motion error occurs. When auto stop is enabled
(SetAutoStopMode Enable), the axis goes into open-loop mode when a motion error occurs. When
auto stop is disabled (SetAutoStopMode Disable), the axis is not affected by a motion error.

GetAutoStopMode returns the current state of the auto stop mode.

Restrictions .

see GetEventStatus (p. 74), SetMotionErrorLimit /GetMotionErrorLimit (p. 97)

SetAutoStopMode
0 D2h

15 8 7 0
Data

write 0 mode
15 1 0

GetAutoStopMode
0 D3h

15 8 7 0
Data

read 0 mode
15 1 0
MC73110 Product Manual 89

90

5

SetBusVoltageLimits 62h
GetBusVoltageLimits 60h
Syntax SetBusVoltageLimits parameter value
GetBusVoltageLimits parameter

Arguments Name Instance Encoding
parameter OverVoltageLimit 0

UnderVoltageLimit 1

Type Range
value unsigned 16 bits 0 to 2^16–1

Packet
Structure

Description SetBusVoltageLimits sets the thresholds for determination of overvoltage and undervoltage
conditions. If the Bus voltage exceeds the OverVoltageLimit value, an overvoltage condition occurs. If
the Bus voltage is less than the UnderVoltageLimit value, an undervoltage condition occurs. Both the
OverVoltageLimit and UnderVoltageLimit have ranges of 0 to 2^16–1, with scaling dependent on Bus
voltage sensor scaling.

GetBusVoltageLimits reads the indicated limit.

Restrictions

see GetBusVoltage (p. 72), GetActivityStatus (p. 69)

SetBusVoltageLimits
0 62h

15 8 7 0
First data word

write parameter
15 0

Second data word
write value

15 0

GetBusVoltageLmits
0 60h

15 8 7 0
First data word

write parameter
15 0

Second data word
read value

15 0
MC73110 Product Manual

55
SetCommandSource 7Eh
GetCommandSource 7Fh
Syntax SetCommandSource source
GetCommandSource

Arguments Name Type Instance Encoding (hex)
source unsigned 16-bit AnalogCmd 0

SPI 1
ProfileGenerator 2

Packet
Structure

Description SetCommandSource determines the source of input for the chip control loops. When set to
AnalogCmd, the command for the velocity or current loops originates from the analog input signal.
When set to SPI, the command for the velocity or current loops is a 16-bit value read from the incoming
SPI data stream. When set to ProfileGenerator, the command is internally generated, based on trajectory
parameters set by the host.

GetCommandSource returns the command source.

Restrictions

see SetLoopMode /GetLoopMode (p. 96)

SetCommandSource
0 7Eh

15 8 7 0
Data

write 0 source
31 1 0

GetCommandSource
0 axis 7Fh

15 12 11 8 7 0
Data

read 0 source
31 1 0
MC73110 Product Manual 91

92

5

SetCommutationMode E2h
GetCommutationMode E3h
Syntax SetCommutationMode mode
GetCommutationMode

Arguments Name Type Instance Encoding
mode unsigned 16-bit Sinusoidal Commutation 0

Hall-Based Commutation 1
Sinusoidal FOC 2
Hall-Based FOC 3

Packet
Structure

Description SetCommutationMode sets the phase commutation mode.

When set to sinusoidal, as the motor turns, the encoder input signals are used to calculate the phase
angle. This angle is in turn used to generate sinusoidally varying outputs to each motor winding.

When set to Hall based, the Hall effect sensor inputs are used to commutate the motor windings using
a trapezoidal (six-step) waveform method.

In the Sinusoidal Commutation and Hall-Based Commutation modes, commutation is performed to
create the commands for the motor phases. If current loops are enabled in either of these modes, they
will be run independently for each motor phase (phase A/B current loops).

In the Sinusoidal FOC and Hall-Based FOC modes, Field Oriented Control (FOC) is used, in
conjunction with Space Vector PWM, to determine the motor phase commands. If current loops are
enabled in either of these modes, they will be run as part of the FOC alogrithm (FOC D/Q loops).

GetCommutationMode returns the value of the commutation mode.

Restrictions

see SetPhaseCounts/GetPhaseCounts (p. 103)

SetCommutationMode
0 E2h

15 8 7 0
Data

write 0 mode
15 2 1 0

GetCommutationMode
0 E3h

15 8 7 0
Data

read 0 mode
15 2 1 0
MC73110 Product Manual

55
SetConditionMask 63h
GetConditionMask 64h
Syntax SetConditionMask condition mask
GetConditionMask condition

Arguments Name Type Instance Encoding
condition unsigned 16-bit AmplifierError 0

AmplifierDisable 1
PWMDisable 2

Range
mask unsigned 16-bit 0 to 216–1

Packet
Structure

Description SetConditionMask sets the mask that is compared to a combined status register to activate the specified
state. A 1 in the bit mask means that that if an active condition occurs in the corresponding source
register bit, the condition is satisfied. If more than one bit-field is programmed with a 1, a logical OR of
the conditions is applied.

For example, to define an amplifier error condition as the occurrence of an overtemperature or an Estop
going active, the condition mask would be set to 2040 (hex).

GetConditionMask returns the mask for the specified condition.

Restrictions

see Section 4.14, “Programmable Conditions,” on page 47.

SetConditionMask
0 63h

15 8 7 0
First data word

write 0 condition

15 2 1 0
Second data word

write mask
15 0

GetConditionMask
0 64h

15 8 7 0
First data word

write 0 condition

15 2 1 0
Second data word

read mask
15 0
MC73110 Product Manual 93

94

5

SetLoopGain 78h
GetLoopGain 79h
Syntax SetLoopGain term value
GetLoopGain term

Arguments Name Type Instance Encoding
term unsigned 16-bit CurrentKp 00h

CurrentKi 10h
CurrentILimit 20h
VelocityKp 01h
VelocityKi 11h
VelocityILimit 21h
VelocityIntegratorKp 02h
VelocityIntegratorKi 12h
VelocityIntegratorILimit 22h
VelocityIntegratorKd 32h

Range Scaling
value unsigned 32-bit 0 to 215–1 unity

0 to 231–1

Packet
Structure SetLoopGain

0 78h
15 8 7 0

First data word
write 0 term

15 8 7 0
Second data word

write value (high-order part)
31 15

Third data word
write value (high-order part)

15 0

GetLoopGain
0 79h

15 8 7 0
First data word

write 0 term
15 8 7 0

Second data word
read value (high-order part)

31 15
Third data word

read value (high-order part)
MC73110 Product Manual

55
SetLoopGain (cont.) 78h
GetLoopGain 79h
Description SetLoopGain assigns the given value to the specified loop gain.

GetLoopGain returns the value of the specified loop gain.

CurrentKp, CurrentKi, and CurrentILimit apply to the current loops, regardless of whether the loops are
being run in A/B mode or FOC (D/Q loops).

Restrictions When the term is set to VelocityIntegratorILimit, the value set and returned is a full 32-bit value.

For all other terms, the value set and returned is a 16-bit value in the low-order part of value. When the
term is set to CurrentLimit or VelocityLimit the value set and returned is scaled by 1/256.

see GetLoopIntegral (p. 78)
MC73110 Product Manual 95

96

5

SetLoopMode 6Fh
GetLoopMode 70h
Syntax SetLoopMode mode
GetLoopMode

Arguments Name Type Instance Encoding Bit number
mode unsigned 16-bit Current Loop 0001h 0

Velocity Loop 0002h 1
Velocity Integrator 0004h 2

Packet
Structure

Description SetLoopMode is used to enable and disable the chip current, velocity and velocity integrator loops.
Setting the corresponding bit to 1 enables the loop. Setting the bit to 0 disables the loop.

GetLoopMode returns the loop mode.

The current loops can be enabled/disabled regardless of whether in A/B or FOC current control.

Restrictions

see

SetLoopMode
0 6Fh

15 8 7 0
Data

write 0 mode

15 3 2 0

GetLoopMode
0 70h

15 8 7 0
Data

read 0 mode

15 3 2 0
MC73110 Product Manual

55
SetMotionErrorLimit CCh
GetMotionErrorLimit CDh
Syntax SetMotionErrorLimit limit
GetMotionErrorLimit

Arguments Name Type Range Scaling Units
limit unsigned 32-bit 0 to 231–1 unity counts

counts/cycle

Packet
Structure

Description SetMotionErrorLimit sets the value of the maximum motion error allowable by the chip. If the velocity
integrator loop is enabled, it will compare this value with its error term (GetLoopError). If this value
is exceeded, then a motion error occurs. Such a motion error may or may not cause the axis to stop
moving, depending on the value set using the SetAutoStopMode command. If the highest enabled
loop is the velocity integrator, this value represents a position error in counts in 32.0 format. If the
highest enabled loop is the velocity loop, this value represents a velocity error in counts/cycle in 16.16
format. If the highest enabled loop is the current loop, this value is not used.

GetMotionErrorLimit returns the motion error limit value.

Restrictions

see SetActualPosition/GetActualPosition (p. 87), SetAutoStopMode/GetAutoStopMode (p. 89)

SetMotionErrorLimit
0 CCh

15 8 7 0
First data word

write limit (high-order part)
31 8 7 15

Second data word
write limit (low-order part)

15 0

GetMotionErrorLimit
0 CDh

15 8 7 0
First data word

read limit (high-order part)
31 8 7 15

Second data word
read limit (low-order part)

15 0
MC73110 Product Manual 97

98

5

SetMotorCommand 77h
GetMotorCommand 69h
Syntax SetMotorCommand value
GetMotorCommand

Arguments Name Type Range Scaling Units
value signed 16-bit –215 to 215–1 100/215 % output

Packet
Structure

Description SetMotorCommand loads the Motor Command register.

GetMotorCommand returns the motor output command. In open-loop mode, it returns the
contents of the motor output command register. In closed-loop mode the value returned is
meaningless.

Scaling example: If it is desired that a motor command value of 13.7 % of full scale be output to the
motor, then this register should be loaded with a value of 13.7 *32,768/100 = 4,489 (decimal). This
corresponds to a hexadecimal value of 1189h.

Restrictions SetMotorCommand and GetMotorCommand are valid only when the motor mode is set to off.

see SetPWMLimit/GetPWMLimit (p. 108), SetMotorMode/GetMotorMode (p. 100)

SetMotorCommand
0 77h

15 8 7 0
Data

write value
15 0

GetMotorCommand
0 69h

15 8 7 0
Data

read value
15 0
MC73110 Product Manual

55
SetMotorLimit 06h
GetMotorLimit 07h
Syntax SetMotorLimit limit
GetMotorLimit

Arguments Name Type Range Scaling Units
limit unsigned 16-bit 0 to 215–1 100/215 % output

Packet
Structure

Description SetMotorLimit sets the maximum value for the motor output command allowed by the digital servo
filter. Motor command values beyond this value will be clipped to the specified motor command limit.
For example, if the motor limit was set to 1,000, and the servo filter determined that the current motor
output value should be 1,100, then the actual output value would become 1,000. If the output value were
–1,100, then it would be clipped to –1,000. This command is useful for protecting amplifiers, motors,
or system mechanisms in situations wherein a motor command exceeding a specific value will cause
damage.

GetMotorLimit reads the motor limit value.

Scaling example: if it is desired that a motor limit of 75% of full scale be established, then this register
should be loaded with a value of 75.0 *32,768/100 = 24,576 (decimal). This corresponds to a
hexadecimal value of 06000h.

Restrictions This command only affects the motor output when the axis motor mode is on (SetMotorMode). When
the motion IC is in open loop mode, this command has no affect.

see SetMotorCommand/GetMotorCommand (p. 98)

SetMotorLimit
0 06h

15 8 7 0
Data

write limit
15 0

GetMotorLimit
0 07h

15 8 7 0
Data

read limit
15 0
MC73110 Product Manual 99

100

5

SetMotorMode DCh
GetMotorMode DDh
Syntax SetMotorMode mode
GetMotorMode

Arguments Name Type Instance Encoding
mode unsigned 16-bit Off 0

On 1

Packet
Structure

Description SetMotorMode determines the mode of motor operation. When set to On, the axis is placed in
closed-loop mode, and is controlled by the output of the current, velocity integrator filter, or velocity
filter. When the motor mode is set to Off, the axis is in open-loop mode, and is controlled by
commands placed directly into the motor output register by the host.

GetMotorMode returns the motor mode.

Restrictions

see GetActivityStatus (p. 69), SetMotorCommand/GetMotorCommand (p. 98)

SetMotorMode
0 DCh

15 8 7 0
Data

write 0 mode
15 2 1 0

GetMotorMode
0 DDh

15 8 7 0
Data

read 0 mode
15 2 1 0
MC73110 Product Manual

55
SetPhaseAngle 84h
GetPhaseAngle 2Ch
Syntax SetPhaseAngle angle
GetPhaseAngle

Arguments Name Type Range Scaling Units
angle unsigned 16-bit 0 to 215–1 unity counts

Packet
Structure

Description SetPhaseAngle sets the instantaneous commutation angle.

GetPhaseAngle returns the value of the phase angle. To convert counts to an actual phase angle, divide
by the number of encoder counts per electrical cycle and multiply by 360. For example, if a value of 500
is retrieved using GetPhaseAngle, and the counts per electrical cycle value has been set to 2,000
(SetPhaseCounts command), this corresponds to an angle of (500/2,000)*360 = 90 degrees phase
angle position.

Restrictions The specified angle must not exceed the number of counts per electrical cycle set by the
SetPhaseCounts command. SetPhaseAngle is only valid when using sinusoidal commutation.

see SetPhaseCounts/GetPhaseCounts (p. 103)

SetPhaseAngle
0 84h

15 8 7 0
Data

write angle
15 0

GetPhaseAngle
0 2Ch

15 8 7 0
Data

read angle
15 0
MC73110 Product Manual 101

102

5

SetPhaseCorrectionMode E8h
GetPhaseCorrectionMode E9h
Syntax SetPhaseCorrectionMode mode
GetPhaseCorrectionMode

Arguments Name Type Instance Encoding
mode unsigned 16-bit — (Reserved) 0

Index 1
Hall 2

Packet
Structure

Description SetPhaseCorrectionMode sets the phase correction mode for to either Index or Hall. When phase
correction is set to Index, the encoder index signal is used to synchronize the commutation phase angle
for each motor revolution. This ensures that the commutation angle will remain correct even if some
encoder counts are lost due to electrical noise, or due to the number of encoder counts/electrical
phase not being an integer. When phase correction is set to Hall, the Hall sensor signals are used to
synchronize the commutation phase angle once per electrical cycle.

GetPhaseCorrectionMode returns the phase correction mode.

Restrictions

see SetPhaseCounts/GetPhaseCounts (p. 103)

SetPhaseCorrectionMode
0 E8h

15 8 7 0
Data

write 0 mode
15 2 1 0

GetPhaseCorrectionMode
0 E9h

15 8 7 0
Data

read 0 mode
15 2 1 0
MC73110 Product Manual

55
SetPhaseCounts 75h
GetPhaseCounts 7Dh
Syntax SetPhaseCounts counts
GetPhaseCounts

Arguments Name Type Range Scaling Units
counts unsigned 16-bit 1 to 215–1 unity counts

Packet
Structure

Description SetPhaseCounts sets the number of encoder counts per electrical cycle of the motor. If this value is
not an integer, then the closest integer value should be used. Automatic phase correction
(Set/GetPhaseCorrectionMode) should be used to correct the phase angle. The number of electrical
cycles is equal to 1/2 the number of motor poles. If the number of encoder counts per electrical cycle
exceeds 215, see SetPhasePrescale.

GetPhaseCounts returns the number of counts per electrical cycle.

Restrictions If an encoder is being used for commutation then SetCommutationMode must be called after calling
SetPhaseCounts and before moving the motor, in order to ensure that the motor phase is correctly set.

see SetCommutationMode (p. 92)

SetPhaseCounts
0 75h

15 8 7 0
Data

write counts
15 0

GetPhaseCounts
0 7Dh

15 8 7 0
Data

write counts
15 0
MC73110 Product Manual 103

104

5

SetPhasePrescale E6h
GetPhasePrescale E7h
Syntax SetPhasePrescale scale
GetPhasePrescale

Arguments Name Type Instance Encoding
scale unsigned 16-bit Off 0

On 1

Packet
Structure

Description

Restrictions

SetPhasePrescale On causes the number of encoder counts to be scaled by a factor of 1/64 before
being used to calculate a commutation angle. When operated in the prescale mode, the chip can
commutate motors with a high number of counts per electrical cycle, such as motors with very high
accuracy encoders.

SetPhasePrescale Off removes the scale factor.

GetPhasePrescale returns the scaling mode.

This command should only be used if the encoder count per electrical cycle of the motor exceeds
32767.

see

SetPhasePrescale
0 E6h

15 8 7 0
Data

write 0 scale
15 2 1 0

GetPhasePrescale
0 E7h

15 8 7 0
Data

read 0 scale
15 2 1 0
MC73110 Product Manual

55
SetPWMDeadTime 16h
GetPWMDeadTime 17h
Syntax

Arguments

SetPWMDeadTime time
GetPWMDeadTime

Name
Instance
(in µs) Encoding

Instance
(in µs) Encoding

time 0 0 1.2 28

0.025 1 1.3 29

0.05 2 1.4 30

0.075 3 1.5 31

0.1 4 1.6 32

0.125 5 1.8 33

0.15 6 2 34

0.175 7 2.2 35

0.2 8 2.4 36

0.225 9 2.6 37

0.25 10 2.8 38

0.275 11 3 39

0.3 12 3.2 40

0.325 13 3.6 41

0.35 14 4 42

0.375 15 4.4 43

0.4 16 4.8 44

0.45 17 5.2 45

0.5 18 5.6 46

0.55 19 6 47

0.6 20 6.4 48

0.65 21 7.2 49

0.7 22 8 50

0.75 23 8.8 51

0.8 24 9.6 52

0.9 25 10.4 53

1 26 11.2 54

1.1 27 12 55
MC73110 Product Manual 105

106

5

SetPWMDeadTime (cont.) 16h
GetPWMDeadTime 17h
Packet
Structure

Description
SetPWMDeadTime sets the time between successive high/low or low/high turn-on sequences for
a given phase. This is often an important requirement to avoid excessive current flow between the
upper and lower switching elements of the amplifier. To determine the correct minimum delay time,
consult the specifications for the switching IC or circuit. The programmed dead time delay affects all
phases.

GetPWMDeadTime returns the code for the dead time.

Restrictions Dead time generation is only active when the chip is operating in six-signal PWM mode.

see SetPWMOutputMode/GetPWMOutputMode (p. 109),
SetPWMSense/GetPWMSense (p. 110)

SetPWMDeadTime
0 16h

15 8 7 0
Data

write time
15 0

GetPWMDeadTime
0 17h

15 8 7 0
Data

read time
15 0
MC73110 Product Manual

55
SetPWMFrequency 0Ch
GetPWMFrequency 0Dh
Syntax SetPWMFrequency frequency
GetPWMFrequency

Arguments Name Type Range Scaling Units
frequency unsigned 16 bits 0 to 216–1 1/28 kHz

Packet
Structure

Description SetPWMFrequency sets the PWM output frequency (in kHz). Only two frequencies are supported by
the MC73110; these are shown in the table below. To select one of the supported frequencies, pass the
value listed in the SetPWMFrequency value column as the frequency argument to this command.

Restrictions

see SetPWMOutputMode/GetPWMOutputMode (p. 109)

SetPWMFrequency
0 0Ch

15 8 7 0
Data

write frequency
15 0

GetPWMFrequency
0 0Dh

15 8 7 0
Data

read frequency
15 0

Approximate
Frequency

PWM bit
Resolution

Actual
Frequency

SetPWMFrequency
Value

20 kHz 10 19.531 kHz 5,000

40 kHz 9 39.062 kHz 10,000
MC73110 Product Manual 107

108

5

SetPWMLimit 20h
GetPWMLimit 21h
Syntax SetPWMLimit limit
GetPWMLimit

Arguments Name Type Range Scaling Units
limit unsigned 16-bit 0 to 215–1 100/215 % output

Packet
Structure

Description SetPWMLimit sets the output PWM duty cycle limit.

GetPWMLimit reads the current value of the output PWM duty cycle limit. Scaling example: if a limit
of 97% of full scale is required, then this register should be loaded with a value of 97.0 *32,768/100
= 31,784 (decimal). This corresponds to a hexadecimal value of 7C28h.

Restrictions

see SetMotorCommand/GetMotorCommand (p. 98), SetMotorMode/GetMotorMode (p. 100),
SetPWMOutputMode/GetPWMOutputMode (p. 109)

SetPWMLimit
0 20h

15 8 7 0
Data

write limit
15 0

GetPWMLimit
0 21h

15 8 7 0
Data

read limit
15 0
MC73110 Product Manual

55
SetPWMOutputMode 5Ch
GetPWMOutputMode 5Dh
Syntax SetPWMOutputMode mode
GetPWMOutputMode

Arguments Name Type Instance Encoding
mode unsigned 16-bit 6-signal with dead time 0

3-signal 1
6-signal with dead time, 2
 3rd Leg floating

Packet
Structure

Description SetPWMOutputMode determines the form of the motor output signal.

GetPWMOutputMode returns the code for the motor output mode.

Restrictions The 6-signal mode which floats the 3rd leg’s drive is only available if using Hall-Based commutation (not
FOC).

see SetPWMSense/GetPWMSense (p. 110)

SetPWMOutputMode
0 5Ch

15 8 7 0
Data

write 0 mode

15 2 1 0

GetPWMOutputMode
0 5Dh

15 8 7 0
Data

read 0 mode

15 2 1 0
MC73110 Product Manual 109

110

5

SetPWMSense 73h
GetPWMSense 74h
Syntax SetPWMSense mask
GetPWMSense

Arguments Name Instance Encoding Bit number
mask PWMAHigh/PWMA 0001h 0

PWMALow 0002h 1
PWMBHigh/PWMB 0004h 2
PWMBLow 0008h 3
PWMCHigh/PWMC 0010h 4
PWMCLow 0020h 5

Packet
Structure

Description SetPWMSense establishes the sense of the PWM output signals from the chip by using a bitwise
mask.
For each sense bit that is 0, the output is active low.
For each sense bit that is 1, the output is active high.
When the chip is operating in six-signal output mode (see SetPWMOutputMode), all six bits of the
mask are valid. When the chip is operating in three-signal output mode, only bits 0, 2, and 4 of the
mask are used.

GetPWMSense returns the PWM sense mask.

Restrictions Warning: Incorrect settings in this register may damage the output circuitry or motor.

see SetPWMOutputMode/GetPWMOutputMode (p. 109)

SetPWMSense
0 73h

15 8 7 0
Data

write mask

15 6 5 0

GetPWMSense
0 74h

15 8 7 0
Data

write mask

15 6 5 0
MC73110 Product Manual

55
SetSampleTime 38h
GetSampleTime 61h
Syntax SetSampleTime time
GetSampleTime

Arguments Name Type Range Units
time unsigned 16-bit 102 to 2000 µsec/cycle

Packet
Structure

Description SetSampleTime sets the time basis for the motion processor. This time basis determines the trajectory
update and the velocity servo loop calculation rate. It does not, however, determine the commutation
rate or the current loop rate. The time value is expressed in microseconds (µsec). The minimum value
allowed is 102 µsec. The motion processor hardware can adjust the cycle time only in increments of 51.2
µsec (rounded up). For example, 154, 205, 256, etc. The time value passed to this command will be
rounded up to the nearest increment of this base value.

GetSampleTime returns the current sample time value.

Restrictions

see

SetSampleTime
0 38h

15 8 7 0
Data

write time
15 0

GetSampleTime
0 61h

15 8 7 0
Data

read time
15 0
MC73110 Product Manual 111

112

5

SetSerialPortMode 8Bh
GetSerialPortMode 8Ch
Syntax SetSerialPortMode mode
GetSerialPortMode

Arguments Name Type Encoding
mode unsigned 16-bit see below

Packet
Structure

Description SetSerialPortMode sets the configuration for the asynchronous serial port.

GetSerialPortMode returns the configuration for the asynchronous serial port.

The following table shows the encoding of the data used by this command.

Restrictions
see

SetSerialPortMode
0 8Bh

15 8 7 0
Data

write multi-drop address 0 protocol
stop
bits parity transmission rate

15 11 10 9 8 7 6 5 4 3 0

GetSerialPortMode
0 8Ch

15 8 7 0
Data

read multi-drop address 0 protocol
stop
bits parity transmission rate

15 11 10 9 8 7 6 5 4 3 0

Bit Number Name Instance Encoding

0–3 Transmission Rate 1200 baud
2400 baud
9600 baud
19200 baud
57600 baud
115200 baud
230400 baud
460800 baud

0
1
2
3
4
5
6
7

4–5 Parity None
Odd
Even

0
1
2

6 Stop Bits 1
2

0
1

7–8 Protocol Point-to-point
— (Reserved)
Multi-drop using idle-line detection

0
1–2
3

11–15 Multi-drop Address Address 0
Address 1
...
Address 31

0
1
...
31
MC73110 Product Manual

55
SetSignalSense A2h
GetSignalSense A3h
Syntax SetSignalSense mask
GetSignalSense

Arguments Name Instance Encoding Bit Number
mask — (Reserved) — 0-1

Index 0004h 2
— (Reserved) — 3-6
HallA 0080h 7
HallB 0100h 8
HallC 0200h 9
— (Reserved) — 10-12
Estop 2000h 13
— (Reserved) — 14-15

Packet
Structure

Description

Restrictions

SetSignalSense establishes the sense of the corresponding bits of the Signal Status register. For all input
signals, the input is inverted if the corresponding sense bit is one; otherwise it is not inverted. For
encoder index/home: if the sense bit is 1, a capture will occur on a low-to-high signal transition.
Otherwise, a capture will occur on a high-to-low transition.

GetSignalSense returns the signal sense mask.

Calling SetSignalSense in a tight loop may interfere with motor commutation if a real change is being
made. Calling SetSignalSense in a tight loop with the same argument is safe.

If an encoder is used for commutation and the sense of the Hall sensors or the index sensor is changed,
then SetCommutationMode must be called before moving the motor to ensure that the motor phase
is set correctly.

see GetSignalStatus (p. 80), SetCommutationMode (p. 92)

SetSignalSense
0 A2h

15 8 7 0
Data

write 0 0 0 0
15 14 13 12 10 9 8 7 6 3 2 1 0

GetSignalSense
0 A3h

15 8 7 0
Data

read 0 0 0 0
15 14 13 12 10 9 8 7 6 3 2 1 0
MC73110 Product Manual 113

114

5

SetSPISyncMode 85h
GetSPISyncMode 86h
Syntax SetSPISyncMode mode
GetSPISyncMode

Arguments Name Instance Encoding
mode Off 0

On 1

Packet
Structure

Description SetSPISyncMode enables or disables the special SPI mode which enables the recovery of SPI
synchronization under some conditions. GetSPISyncMode returns whether this mode is enabled or
not.

Restrictions The SPISyncMode should only be set to On if certain timing requirements on the SPI packets are met.

see Section 4.20, “Synchronous Serial Input (SPI Port),” on page 59.

SetSPISyncMode
0 85h

15 8 7 0
Data

write 0 mode

15 1 0

GetSPISyncMode
0 86h

15 8 7 0
Data

read 0 mode

15 1 0
MC73110 Product Manual

55
SetTemperatureLimit 1Bh
GetTemperatureLimit 1Ch
Syntax SetTemperatureLimit limit
GetTemperatureLimit

Arguments Name Type Range
limit signed 16-bit –215 to 215–1

Packet
Structure

Description SetTemperatureLimit sets the limit value used to determine if an overtemperature condition has
occurred. If an overtemperature condition occurs, bit 6 of the Activity Status register will be set to 1.

GetTemperatureLimit returns the overtemperature limit value.

Restrictions

see GetActivityStatus (p. 69), GetTemperature (p. 81)

SetTemperatureLimit
0 1Bh

15 8 7 0
Data

write limit
15 0

GetTemperatureLimit
0 1Ch

15 8 7 0
Data

read limit
15 0
MC73110 Product Manual 115

116

5

SetVelocity 11h
GetVelocity 4Bh
Syntax SetVelocity velocity
GetVelocity

Arguments Name Type Range Scaling Units
velocity signed 32-bit –231 to 231–1 1/216 counts/cycle

Packet
Structure

Description SetVelocity loads the maximum velocity buffer register. This command is used when the command
source is set to profile generator.

GetVelocity returns the maximum velocity buffer register.

Scaling example:

To load a velocity value of 1.750 counts/cycle, multiply by 65,536 (giving 114,688) and load the
resultant number as a 32-bit number; giving 0001 in the high word and C000h in the low word.
Retrieved numbers (GetVelocity) must be divided by 65,536 to convert to units of counts/cycle.

Restrictions

see SetAcceleration/GetAcceleration (p. 86), SetCommandSource/GetCommandSource (p. 91)

SetVelocity
0 11h

15 8 7 0
First data word

write velocity (high-order part)
31 15

Second data word
write velocity (low-order part)

15 0
GetVelocity

0 4Bh
15 8 7 0

First data word
read velocity (high-order part)

31 15
Second data word

read velocity (low-order part)
15 0
MC73110 Product Manual

55
SetVelocityFeedbackSource 4Eh
GetVelocityFeedbackSource 4Fh
Syntax SetVelocityFeedbackSource source
GetVelocityFeedbackSource

Arguments Name Type Instance Encoding (hex)
source unsigned 16-bits Encoder 0

Tachometer 1
Hall Sensors 2

Packet
Structure

Description SetVelocityFeedbackSource sets the source of input for the actual velocity used by the velocity loop.
When set to Tachometer, the source of velocity information is provided on the tachometer input signal.
When set to Encoder, the source of velocity information is derived from position information provided
by the quadrature A/B signals. When set to Hall Sensors, the velocity is derived from position
information provided by the Hall sensors.

GetVelocityFeedbackSource returns the feedback source.

Restrictions SetVelocityFeedbackSource is not valid with Velocity Integrator enabled.

see

SetVelocityFeedbackSource
0 4Eh

15 8 7 0
Data

write 0 source

15 2 1 0

GetVelocityFeedbackSource
0 4Fh

15 8 7 0
Data

read 0 source

15 2 1 0
MC73110 Product Manual 117

118

5

SetVelocityScalar 23h
GetVelocityScalar 24h
Syntax SetVelocityScalar value
GetVelocityScalar

Arguments Name Type Range
value unsigned 16-bit 3 to 215–1

Packet
Structure

Description SetVelocityScalar sets the multiplier used to convert units of encoder or Hall sensor counts per cycle
into a 16-bit fixed value which is used in the velocity filter equation to represent actual velocity.

The correct value to be used is determined by first calculating the maximum desired motor speed
range in chip units. For example, if the maximum desired speed is 3,000 RPMs, and the encoder has
4000 counts per revolution, then:

speed = 4000*3000

= 12,000,000 counts per minute

= 12,000,000/60 = 200,000 counts per second

assuming a sample time of 102.4 µsec (SetSampleTime 102),

speed = 200,000/(106/102.4) = 20.48 counts per cycle

scalar = 32767/20.48 = 1600

GetVelocityScalar returns the velocity scalar.

Restrictions

see Section 4.9.2, “Velocity Scalar,” on page 37.

SetVelocityScalar
0 23h

15 8 7 0
Data

write value
31 15

GetVelocityScalar
0 24h

15 8 7 0
Data

read value
31 15
MC73110 Product Manual

55
StoreUserData 71h
Syntax StoreUserData

Arguments Variable

Packet
Structure

Description StoreUserData initiates a special mode to store commands into on-chip Flash memory.

Restrictions This command can only be sent when the AmplifierDisable output is active.

see Section 4.19.2, “Storing User Commands to FLASH,” on page 58.

StoreUserData
0 71h

15 8 7 0
MC73110 Product Manual 119

5

This page intentionally left blank.
120 MC73110 Product Manual

Appendix: List of Commands
Get/Set instructions pairs are shown together on the same line of the table.

ClearPositionError 68 Set/GetConditionMask 93

GetActivityStatus 69 Set/GetLoopGain 94

GetAnalog 70 Set/GetLoopMode 96

GetActualVelocity 71 Set/GetMotionErrorLimit 97

GetBusVoltage 72 Set/GetMotorCommand 98
GetCaptureValue 73 Set/GetMotorLimit 99
GetEventStatus 74 Set/GetMotorMode 100
GetHostIOError 75 Set/GetPhaseAngle 101
GetLoopCommand 76 Set/GetPhaseCorrectionMode 102
GetLoopError 77 Set/GetPhaseCounts 103
GetLoopIntegral 78 Set/GetPhasePrescale 104
GetPWMCommand 79 Set/GetPWMDeadTime 105
GetSignalStatus 80 Set/GetPWMFrequency 107
GetTemperature 81 Set/GetPWMLimit 108
GetVersion 82 Set/GetPWMOutputMode 109
NoOperation 83 Set/GetPWMSense 110
Reset 84 Set/GetSampleTime 111
ResetEventStatus 85 Set/GetSerialPortMode 112
Set/GetAcceleration 86 Set/GetSignalSense 113
Set/GetActualPosition 87 Set/GetSPISyncMode 114
Set/GetAnalogOffset 88 Set/GetTemperatureLimit 115
Set/GetAutoStopMode 89 Set/GetVelocity 116
Set/GetBusVoltageLimits 90 Set/GetVelocityFeedbackSource 117
Set/GetCommandSource 91 Set/GetVelocityScalar 118
Set/GetCommutationMode 92 StoreUserData 119
MC73110 Product Manual 121

122 MC73110 Product Manual

This page intentionally left blank.

Index

Numerics
16-bit motor coil voltage commands 27
16-bit registers 44
16-bit synchronous serial SPI-port 36
16-bit velocity representation 37
3-signal mode 25
50/50 PWM output 28
6-signal mode 25

A
absolute maximum ratings 13
AC characteristics 14
acceleration profiles 42
active condition 47
activity status 44, 47

register 44
actual motor currents 30
Actual Position 57
actual position registers 57
address byte 58
amplifier

disable 22
error 47
error condition 47

analog
current signals 31
input voltage 38

analog feedback
signals 25, 30
value 39

analog input
pin 39, 61
specifications 14

analog signal
input 36
range 61

argument
numeric 67
required 67

associated data words 52
asynchronous

frame 55

serial communication 53
serial port 51

auto stop mode 40
automatic

motor shutdown mode 39
phase correction 35

axis
position 42
velocity 39

B
baud rates 54
bias offset 39
bi-polar signals 61
bit

field 47
mask 47
oriented status registers 44

boot 59
serial EEPROM 52

byte-oriented packet format 58

C
calibrating amplifier circuitry 32
capture

received indicator 57
register 57

checksum 53, 54
byte 53, 54
invalid 54
serial 54
valid 54

chip
programming events 47
set action 52

coil voltage 28
command

associated data 52
desired velocity 25
packet 53

command packet 52, 54, 56, 58
format 52
MC73110 Product Manual 123

Index

124
commanded acceleration 42
commutation 21

methods 25
module 36, 38
rate 43
reliability 35

commutator 28, 30, 40
module 25, 30, 60

complete intelligent motion controller 23
condition

bits 47
mask 47

control
application configurations 26
signals 55

control loop 22
structure 26

converting voltages to values 61
counts per cycle 38
current

feedback 61
integral value 41
sensing 61
signal 61

current loop 21, 30
calculations 31
control 22
filter 30
module 25

cycle time 43

D
data

frame format 55
packet 54
transfer 52
words 67

dedicated
amplifier chip 57
motion controller 23

default sample time 60
desired

current 30
velocity 39
velocity command 25, 36

digital current controller 30
direct analog signal 60

input 21
disabling PWM output 48

downstream modules 40

E
EEPROM 21, 58

command format 58
emergency stop 22

processing 21
encoded-field argument 67
encoder 33

counts 33
data stream 36
feedback 38

Estop 22, 47
bit 46
pin 46

event status 44, 47
register 44
register definition 44
word 40, 42

external
adjusting circuitry 39
controller 23
dropping resistors 22
serial EEPROM 24
signal 25
voltage sources 39

F
feedback circuit 31
fixed torque value 32
flash

memory 21, 24, 58
memory, erasing 59
memory, writing 59

G
gain factors 23
general-purpose current control 31

H
half-bridge amplifiers 22
Hall

sensor 22, 33
sensor input 21, 34
states 34

Hall-based
commutation 34
technique 33

hexadecimal code 67
MC73110 Product Manual

Index
high impedance 48
high speed

capture 56
position capture function 57

host
device 21
I/O commands 53
I/O errors 53
microprocessor 24

I
I2C

bus 58
interface 21
temperature sensor input 21

IC cycle time 37
idle-line protocol 56
IGBT 22
incremental encoder input 56
index

pulse 35, 56
sense mask 57
signal 57

input
voltage range 61
voltages 14

instantaneous
axis location 57
velocity 25, 43
velocity loop error 38

instruction
code 55
mnemonic 67
syntax 67

integrated position 42
integration limit 38
intelligent motion controller 26
internal

flash facility 52
profile generator 22, 42, 52

invalid checksums 54
inverted bits, signal status register 46

K
Kicurrent 38
Kpcurrent 38

L
latched bits 44

limit value 29
load operational parameters 58
loop

configuration 60
rate 43

M
main control loop 24
manual mode 32
maximum

counts per cycle 38
error 39
negative current output 30
on time 30
output value 29
positive current output 30
velocity 42
velocity error 39

MC73110 physical characteristics 12
measured velocity 37
mechanical friction 42
minimum

off-time 29, 30
shoot-through time 28
timeout period 55

mode
three-signal output 29
torque 25, 36
voltage 25, 36

module
motor output 26
profile generator 26
velocity integrator 25

monitoring chip status 52
MOSFET 22
motion control card 23
motion error 32, 39, 42

bit 40
condition 32
facility 42
processing 42

motor
coils 22
command limit 32
command register 32, 40, 42
currents 30
mode 43
output logic 27
output module 26
MC73110 Product Manual 125

Index

126
mounting dimensions 12
MSB 59
multi-drop

idle-line mode 54, 55
mode 55
protocol 56

N
negative velocity values 43
numeric argument 67
numerical registers 44

O
offset

bias 31
value 39

output
enable pin 55
values 28
voltages 14

over temperature 47
bit 50

overall control loop flow 24
over-range current 31
over-temperature

set point 50
value 50

P
packet

command 53
response 53
structure 67

parity bit 55
phase

calculations 35
correction mode 35

PI filter 30
PID filter 41
pin

descriptions 17
functionality 18

point-to-point 55
configuration 56
mode 55
serial mode 54, 55

position
based motion error 42
capture 45

capture, indicator 57
capture, register 57
error 42
feedback signals 57

positioning motion processor 23
positive

velocity values 43
voltage referenced 30

potentiometers 39
power-up 21
pre-commutated motor command 33
profile generation 21
profile generator 25, 32, 36, 38, 40, 42, 43

module 26
velocity 43

programmable
maximum error 39
shoot-through function 22
shoot-through timer 28

programmed shoot-through delay 29
proportional integral 30
protocol layering 59
prototyping 51, 58
PWM

coil 61
cycle 28
generator 28, 30
output 25, 47, 48
output disable 22
output generator 30
output rate 43
signal 25
synchronized signals 27
update frequency 28
waveforms 27

Q
quadrature

counts 57
encoder 25
incremental position 57

quadrature encoder
counts 35
data 25
input 21

R
real-time signal levels 45
recommended
MC73110 Product Manual

Index
minimum timeout 56
operating conditions 13

register, position capture 57
required arguments 67
reset 21

defaults 58
response

frames 53
packet 52, 53
packet format 52

resynchronizing with the chip 56

S
sample time 43
scaling 36
serial

buffer IC 55
checksum 54
data transfer 55
EEPROM 21, 57
EEPROM file 58
hardware signals 55
mode, point-to-point 55
transfers 55

serial port 51, 52
command I/O 21
command packet 58
commands 23
communication 52
configuration 54
default configuration 54

servo loop
rate 43, 60
update cycle 41

shoot-through
delay 29
programmable 22
protection off-times 29
timer 29

signal pins 46
signal sense mask

default 45
register 46
value 46

signal sense register 57
signal status 44, 47

register 45, 46
register defintion 45

single host processor 56

single-axis device 21
single-phase 25
sinusoidal

commutation 32, 33
commutation mode 35
lookup technique 33

six-signal
mode 28
output 27

software offset bias 31
SPI

data 60
data stream 25, 40, 60
interface 38
port 59
value 38

square-wave signals 56
standard loop configurations 26
status

event word 40, 58
words 44

stop bits 55
supported temperature sensors 50
symmetric

values 61
waveforms 28

synchronized PWM signals 27
synchronous serial

(SPI) data stream 22
SPI data input 21

syntax, instruction 67

T
tachometer 36

signal 37, 39
velocity source 37

temperature
data 50
limit, default value 50
limit, register 50
sensing devices 50
sensor 50

three-phase
brushless DC motors 21
PWM signal generation 21

three-signal
output 27
output mode 29

timeout period 56
MC73110 Product Manual 127

Index

128
torque 21
mode 25, 36
mode, amplifier 26
ripple 28
set point value 22

trajectory
generator 43
profile commands 43

transfer
read 67
write 67

transmission
byte 53
errors 53
protocols. 55

transmit line 55
trigger condition 57
triggering chip events 47
tri-stating 55

U
unused bits 67

V
valid checksum 54
velocity

based, motion error 42
bounded, profiles 42
command 39
control 21
error 39, 42
error monitoring 42
feedback 36
integrator 40, 42, 60
mode, amplifier 26
overshoot transient 38
pin 25
profile 40
scalar 37, 38
scalar register 40
source 36, 37
values 40

velocity integrator 36, 43
filter 41
loop 32, 38
module 25

velocity loop 21, 36, 42, 43, 60
calculation 38
filter 36, 41

module 25
update rate 36

velocity values
negative 43
positive 43

voltage
mode 25, 36
mode, control 21
output 61
states 46
value 32

Z
zero

current 31
data packet 56
reference 31, 39
MC73110 Product Manual

For additional information, or for technical assistance,
please contact PMD at (978) 266-1210.

You may also e-mail your request to support@pmdcorp.com

Visit our website at http://www.pmdcorp.com

Performance Motion Devices
80 Central Street

Boxborough, MA 01719
MC73110 Product Manual 129

	NOTICE
	Warranty
	Safety Notice
	Disclaimer
	Related Documents
	Table of Contents
	List of Figures
	1. Product Overview
	2. Specifications
	2.1 Configurations, Parameters, and Performance
	2.2 Physical Characteristics and Mounting Dimensions
	3. Electrical Specifications
	3.1 Absolute Maximum Ratings
	3.2 Recommended Operating Conditions
	3.3 AC Characteristics
	3.4 Timing Diagrams
	3.5 Pin Descriptions
	3.6 Phase Lock Loop (PLL)
	4. Theory of Operations
	4.1 Functional Overview
	4.2 Internal Block Diagram
	4.3 Connection Summary
	4.4 Control Loop Overview
	4.5 Motor Output and Signal Generation
	4.6 Current Loop
	4.7 Commutation
	4.8 Field Oriented Control (FOC)
	4.9 Velocity Loop
	4.10 Velocity Integrator
	4.11 Profile Generation
	4.12 Loop Rate
	4.13 Status Words
	4.14 Programmable Conditions
	4.15 Temperature Sensor
	4.16 Bus Voltage Sensor
	4.17 Serial Port
	4.18 Incremental Encoder Input
	4.19 Serial EEPROM
	4.20 Synchronous Serial Input (SPI Port)
	4.21 Analog Signal Processing
	4.22 GetLoop Commands and Variables
	5. Instruction Reference
	5.1 How to Use This Reference

