

# **IncOder CORE Series Datasheet**

**IncOder Product Guides** 

Document Revision: 7 Exported on: 11/03/2023

Celera Motion, A Novanta Company 125 Middlesex Turnpike, Bedford, MA 01730, USA www.celeramotion.com



## **Table of Contents**

| 1                                                  | General Information                                                                                                                                                                                                                                                                                   | 4                                                        |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1.1                                                | Revision History                                                                                                                                                                                                                                                                                      | 4                                                        |
| 1.2                                                | Disclaimers and limitations of liability                                                                                                                                                                                                                                                              | 4                                                        |
| 2                                                  | Overview                                                                                                                                                                                                                                                                                              | 5                                                        |
| 2.1                                                | Features and Benefits                                                                                                                                                                                                                                                                                 | 6                                                        |
| 3                                                  | Specifications                                                                                                                                                                                                                                                                                        | 7                                                        |
| 4                                                  | Storage and Handling                                                                                                                                                                                                                                                                                  | 11                                                       |
| 4.1                                                | Handling Considerations                                                                                                                                                                                                                                                                               | 11                                                       |
| 4.2                                                | Storage Considerations                                                                                                                                                                                                                                                                                | 11                                                       |
| 4.3                                                | Electrical Safety                                                                                                                                                                                                                                                                                     | 11                                                       |
| 5                                                  | Electrical Interface                                                                                                                                                                                                                                                                                  | 12                                                       |
| 5.1                                                | Connector Overview                                                                                                                                                                                                                                                                                    | 12                                                       |
| -                                                  |                                                                                                                                                                                                                                                                                                       |                                                          |
| 6                                                  | Mechanical Dimensions                                                                                                                                                                                                                                                                                 | 14                                                       |
| 6<br>6.1                                           | Mechanical Dimensions<br>Mechanical Mounting Format                                                                                                                                                                                                                                                   |                                                          |
|                                                    |                                                                                                                                                                                                                                                                                                       | 14                                                       |
| 6.1                                                | Mechanical Mounting Format                                                                                                                                                                                                                                                                            | 14<br>14                                                 |
| 6.1<br>6.1.1                                       | Mechanical Mounting Format<br>Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1                                                                                                                                                                                                          | 14<br>14<br>15                                           |
| 6.1<br>6.1.1<br>6.2                                | Mechanical Mounting Format<br>Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1<br>Connection Options                                                                                                                                                                                    | 14<br>14<br>15<br><b>17</b>                              |
| 6.1<br>6.1.1<br>6.2<br><b>7</b>                    | Mechanical Mounting Format<br>Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1<br>Connection Options<br>Installation                                                                                                                                                                    | 14<br>14<br>15<br><b>17</b><br>17                        |
| 6.1<br>6.1.1<br>6.2<br><b>7</b><br>7.1             | Mechanical Mounting Format<br>Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1<br>Connection Options<br>Installation<br>Mounting Features                                                                                                                                               | 14<br>14<br>15<br><b>17</b><br>17                        |
| 6.1<br>6.2<br>6.2<br>7<br>7.1<br>7.2               | Mechanical Mounting Format<br>Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1<br>Connection Options<br>Installation<br>Mounting Features<br>Alignment Tolerances                                                                                                                       | 14<br>15<br><b>17</b><br>17<br>17<br>17                  |
| 6.1<br>6.2<br>7<br>7.1<br>7.2<br>7.3               | Mechanical Mounting Format<br>Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1<br>Connection Options<br>Installation<br>Mounting Features<br>Alignment Tolerances<br>Metal Exclusion Zone                                                                                               | 14<br>15<br>17<br>17<br>17<br>17<br>17                   |
| 6.1<br>6.2<br>7<br>7.1<br>7.2<br>7.3<br>7.4        | Mechanical Mounting Format<br>Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1<br>Connection Options<br>Installation<br>Mounting Features<br>Alignment Tolerances<br>Metal Exclusion Zone<br>Metal Exclusion Zone Example - CORE-3-70-XX1001-XXXX-PR1                                   | 14<br>15<br>17<br>17<br>17<br>17<br>17<br>19<br>21       |
| 6.1<br>6.2<br>7<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5 | Mechanical Mounting Format<br>Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1<br>Connection Options<br>Installation<br>Mounting Features<br>Alignment Tolerances<br>Metal Exclusion Zone<br>Metal Exclusion Zone Example - CORE-3-70-XX1001-XXXX-PR1<br>Zero Position and Zero Setting | 14<br>15<br>17<br>17<br>17<br>17<br>17<br>19<br>21<br>22 |



| 8.1.2 | Data Area Definition                                       | 23   |
|-------|------------------------------------------------------------|------|
| 8.1.3 | Example for 18 bits resolution:                            | 24   |
|       | SSI - Synchronous Serial Interface Protocol                |      |
|       | SSI - Product Options SSI1 to SSI9                         |      |
| 8.3   | Asynchronous Serial Interface                              | . 30 |
| 8.3.1 | Asynchronous Serial Interface - Product Options ASI1, ASI2 | 30   |
| 8.4   | Serial Peripheral Interface                                | 32   |
| 8.4.1 | Serial Peripheral Interface (SPI) - Product Option SPI1    | 32   |
| 8.4.2 | SPI1 Timing Information                                    | 34   |
| 9     | How to Order                                               | . 37 |
| 9.1   | IncOder CORE Part Numbers                                  | 37   |
| 10    | Cable Information                                          | 40   |
| 10.1  | Cable Part Number                                          | .40  |
| 10.2  | Cable Drawing                                              | .40  |
| 10.3  | Cable Wire Assignment                                      | 41   |
| 11    | Warranty / Remedy                                          | .43  |

# Novanta1 General Information

## **1.1 Revision History**

| Revision | Release Date    | Changes                                            |
|----------|-----------------|----------------------------------------------------|
| 1.0      | Sep 29 2021     | Initial Release                                    |
| 1.1      | Jul 4 2022      | Replaced connector images - PR1 installation image |
| 1.2      | October 6 2023  | 70mm size added                                    |
| 1.2.1    | November 3 2023 | Document style updates                             |

## **1.2 Disclaimers and limitations of liability**

The information contained within this document contains proprietary information belonging to Celera Motion. Such information is supplied solely for the purpose of assisting users of the product in its installation.

Celera Motion rejects all liability for errors or omissions in the information or the product or in other documents mentioned in this document.

The text and graphics included in this document are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.

This document may contain technical or other types of inaccuracies. The information contained within this document is subject to change without notice and should not be construed as a commitment by Celera Motion. Celera Motion assumes no responsibility for any errors that may appear in this document.

Some countries do not allow the limitation or exclusion of liability for accidental or consequential damages, meaning that the limits or exclusions stated above may not be valid in some cases.

# Novanta2 Overview

IncOder CORE is a lightweight absolute rotary encoder series, fully-contained in an open frame printed circuit board kit. The frameless, compact design reduces system weight and design envelope, making it suited for integration into robotic joints and motorized actuators. The angle feedback sensor utilizes a unique, field-proven inductive technique, that delivers repeatable, accurate and high resolution absolute digital feedback. IncOder CORE is insensitive to contamination, delivering robust angle measurement performance.

The angle sensor can be installed quickly and simply, by mounting the rotor and stator pair into the host assembly by means of M2 screw mounting holes. With modest installation tolerances, a programmable zero set and no calibration required, the sensor can simply be screwed and doweled in place for fast and practical setup.

Each sensor includes a passive rotor target, paired with an active stator. The stator contains all the required processing electronics in a lightweight, stacked circuit board package. The stator features a 10-way Molex PicoClasp connector for power input and data output. The IncOder CORE sensor can be configured with an axial or radial connector for optimised system design.

IncOder CORE is available in 44mm and 70mm O.D. sizes and can be configured during build to output up to 20-bits of absolute digital position data in a range of protocol options including SPI, BiSS-C, and SSI.



## 2.1 Features and Benefits

- Frameless, compact design for reduced weight and design envelope
- Repeatable, Accurate and High Resolution absolute position feedback
- Large bore and low axial height for use in rotary actuators
- Insensitive to contamination, providing robust position measurement
- No precision installation tolerances, providing simple installation
- No calibration, reducing OEM production time and cost
- Economical price for reduced system cost
- Customization and additional sizes for optimized system design

# Novanta3 Specifications

| System Data                                 | 44mm 70mm                                                                        |               |  |
|---------------------------------------------|----------------------------------------------------------------------------------|---------------|--|
| Measurement                                 | Absolute over 360 °                                                              |               |  |
| Resolution                                  | 10-17 bits 10-20 bits                                                            |               |  |
| Accuracy                                    | ±360"                                                                            | ±125"         |  |
| Installation Gap                            | 0.5 ± 0.2 mm                                                                     | 1.1 ± 0.35 mm |  |
| Max Radial Offset                           | 0.2 mm                                                                           | 0.25 mm       |  |
| Max. Physical Speed                         | 10,000 rpm                                                                       |               |  |
| Repeatability (within a single power cycle) | ±1 LSB                                                                           |               |  |
| Measurement Update Rate                     | 10                                                                               | kHz           |  |
| Internal Position Update Period             | 100                                                                              | ) µs          |  |
| Thermal Drift Co-efficient                  | <1 p                                                                             | opm           |  |
| Electrical Data                             | 44mm 70mm                                                                        |               |  |
| Supply Voltage                              | 4.5 - 5.5 VDC, 8 - 12 VDC                                                        |               |  |
| Current Consumption                         | <100 mA (typically <75 mA and does not change significantly with voltage supply) |               |  |

# Movanta

| Electrical Data                  | 44mm                                                                               | 70mm                 |  |
|----------------------------------|------------------------------------------------------------------------------------|----------------------|--|
| Data I/O                         | RS422 Compatible, supports SSI, SPI, BiSS-C or ASI (asynchronous serial interface) |                      |  |
| Reverse Polarity Protection      | protected to 32 VDC                                                                |                      |  |
| Power Up Time to 1st Measurement | <120 ms                                                                            |                      |  |
| BiSS Max. Clock Rate             | 2.5 M                                                                              | MHz                  |  |
| SPI Max. Clock Rate              | 4 M                                                                                | Hz                   |  |
| SSI Max. Clock Rate              | 2 MHz                                                                              |                      |  |
| Zero Setting                     | Zero Set / Zero Rese                                                               | et via Connector Pin |  |
| Mechanical Data                  | 44mm                                                                               | 70mm                 |  |
| Rotor OD                         | ø35.6 mm                                                                           | ø65 mm               |  |
| Rotor Screw Hole PCD             | ø36 mm ø36.6 mm   ø44 mm ø68.8 mm   ø56.8 mm ø75.0 mm                              |                      |  |
| Stator OD                        |                                                                                    |                      |  |
| Stator Screw Hole PCD            |                                                                                    |                      |  |
| ID                               | ø10.4 mm                                                                           | ø30.3 mm             |  |
| Total Height (Clearance) 12.1 mm |                                                                                    | 13.4 mm              |  |

| Mechanical Data             | 44mm                                                                                                                                       | 70mm                                                                                                                                       |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mass (Rotor, Stator, Total) | 3 g, 12 g, 15 g<br>(not including mounting<br>hardware)                                                                                    | 6.5g, 22.5g, 29g<br>(not including mounting<br>hardware)                                                                                   |  |
| CORE-1 Mounting             | External Screw Mount Rotor,<br>External Screw Mount Stator<br>M2 screw mount. Fix rotor using<br>c.sunk screws, stator using cap<br>screws | N/A                                                                                                                                        |  |
| CORE-3 Mounting             | N/A                                                                                                                                        | Internal Screw Mount Rotor,<br>External Screw Mount Stator<br>M2 screw mount. Fix rotor using<br>c.sunk screws, stator using cap<br>screws |  |
| Connector                   | 10-way Molex PicoClasp                                                                                                                     |                                                                                                                                            |  |
| Environmental Data          | 44mm 70mm                                                                                                                                  |                                                                                                                                            |  |
| IP Rating                   | IP00 (options for confo                                                                                                                    | rmal coating available)                                                                                                                    |  |
| Operating Temperature       | -20 °C t                                                                                                                                   | :o 85 °C                                                                                                                                   |  |
| Storage Temperature         | -40 °C to 105 °C                                                                                                                           |                                                                                                                                            |  |
| Contamination Immunity      | Tolerant to dust, dirt, oily fingerprints.                                                                                                 |                                                                                                                                            |  |
| Humidity                    | 10-85 % RH Non-Condensing                                                                                                                  |                                                                                                                                            |  |

| ser Cable Data 44mm 70mm |                                                                                 | 70mm |
|--------------------------|---------------------------------------------------------------------------------|------|
| Terminations             | End A: Molex 10-way connector<br>End B: Coated wires, stripped 1mm (max 1.3mm). |      |
| Standards                | BS 3G 210                                                                       |      |
| Wire Gauge               | 28 - 32 AWG                                                                     |      |
| Wire Coating             | PTFE coated                                                                     |      |
| Sleeve                   | Polychloroprene sections                                                        |      |
| Length Tolerance         | ± 5 %                                                                           |      |

# Novanta4 Storage and Handling

IncOder CORE is a precision encoder and has been designed to function in a wide range of applications and environments. To take full advantage of the encoder design, allow easy access to the sensor for service and/or replacement. For optimal performance and reliability:

- DO follow standard ESD precautions while handling the sensor.
- DO allow proper clearance for stator-rotor alignment.
- DO follow setup and alignment instructions for the encoder system.
- DO NOT store sensors in an uncontrolled environment.
- DO NOT electrically overstress the sensor (power supply ripple/noise).
- DO NOT intentionally "hot swap" the sensor if the device is energized.

## 4.1 Handling Considerations

- Follow standard Electrostatic Discharge (ESD) precautions at all times.
- We advise correct use of earthed antistatic mats, earth straps and wrist straps when handling the device components.
- Gloved handling is not required but is recommended. If gloves are not used, hands should be clean.

## 4.2 Storage Considerations

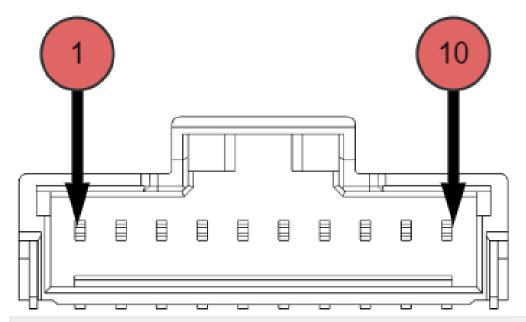
When storing, only anti-static or static shielded packaging and storage media are advised to be used as primary or secondary packaging for the product.

## 4.3 Electrical Safety

To protect the encoder, and for compliance with EMC, it is recommended to install the encoder in an enclosed metal housing.

Further considerations from the end system manufacturer are required if other signals and sources of interference will pass through the housing.

Typical sources of electrical interference include the following: strong magnetic fields from transformers, brakes, and electric motors, relays, contactors, and solenoid valves, high-frequency equipment, pulse devices, and stray magnetic fields from switching power supplies, power cables and supply lines to the above mentioned devices.


Measures the user can take to mitigate interference during operation are:

- Properly install or mount encoders in accordance with the mounting instructions.
- Do not install cables in the immediate vicinity of interference sources.
- Ensure the metal shield does not leak, and that it is suitably grounded.

# Novanta

# **5** Electrical Interface

## 5.1 Connector Overview



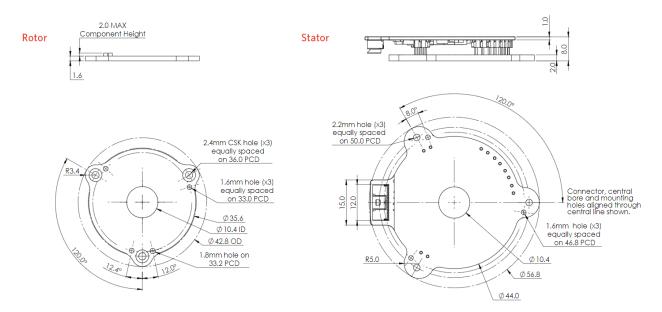
#### IncOder CORE Connector

Molex 10-way PicoClasp Connector

| Pin | Signal     | Function                                                                                                                                                         |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Zero Set   | Optional Zero Set function. To use, connect to electrical ground (<0.5V) for >3 seconds at power up but left unconnected (i.e. open circuit) during operation.   |
| 2   | Zero Reset | Optional Zero Reset function. To use, connect to electrical ground (<0.5V) for >3 seconds at power up but left unconnected (i.e. open circuit) during operation. |
| 3   | Reserved   | Reserved for future use.                                                                                                                                         |
| 4   | Reserved   | Reserved for future use.                                                                                                                                         |



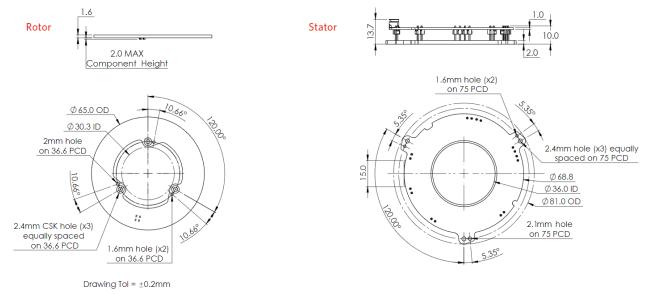
| 5  | DATA A              | Absolute Encoder Output (Data A / Data +) |
|----|---------------------|-------------------------------------------|
| 6  | CLOCK A             | Clock Input (Clock A / Clock +)           |
| 7  | DATA B              | Absolute Encoder Output (Data B / Data -) |
| 8  | CLOCK B             | Clock Input (Clock B / Clock -)           |
| 9  | ov                  | Digital signal ground.                    |
| 10 | V <sub>supply</sub> | Supply 4.5-5.5V, 8-12V, <100mA            |


# Novanta

# **6** Mechanical Dimensions

## 6.1 Mechanical Mounting Format

### 6.1.1 Screw Mount Stator & Screw Mount Rotor - Product Option CORE-1


### 44mm Mechanical Drawings



1 Note: Radial Connection Type 2 - Product Option PR2

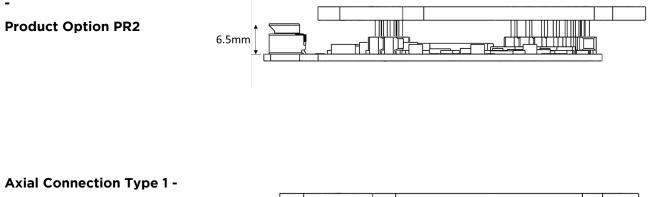


#### 70mm Mechanical Drawings

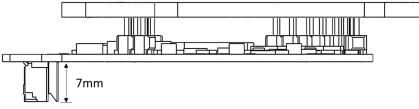



2 Note: Radial Connection Type 1 - Product Option PR1

## 6.2 Connection Options


#### **Radial Connection Type 1**

#### **Product Option PR1**






#### **Radial Connection Type 2**



#### Product Option PA1



# Novanta7 Installation

IncOder CORE is an unpackaged encoder requiring the user to design mounting features for integration of the position sensor within the host system assembly, taking into consideration alignment tolerances, mounting features, shielding and metal exclusion volume.

# 7.1 Mounting Features

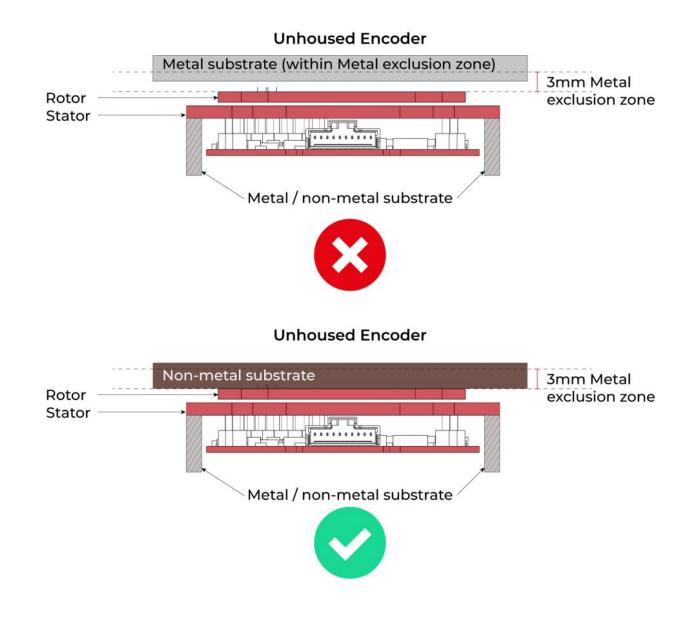
IncOder CORE consists of an active stator and passive rotor. Both component parts contain mounting features as outlined in Mechanical Dimensions, which includes screw mounting holes and alignment dowel holes. Recommended installation is to align and locate both the rotor and stator using the dowel features in the rotor and stator, and screw in place using the M2 screw holes provided. The rotor features countersunk screw holes, and an additional dowel hole for locating Zero Position. The stator features clearance screw holes for mounting with cap screws.

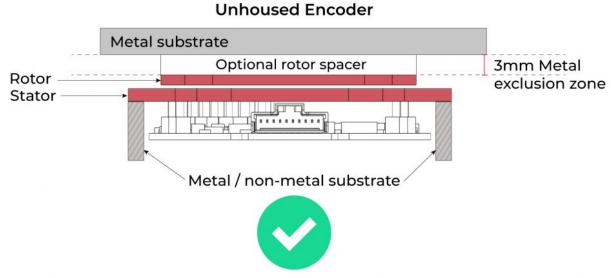
Note: It is recommended to mount the IncOder using non-metal spacers to ensure the Metal Exclusion Zone is established. See Metal Exclusion Zone section for details.

# 7.2 Alignment Tolerances

IncOder CORE consists of a rotor-stator pair. The rotor and stator should be mounted within the prescribed mounting tolerances. Provided axial gap and non-concentricity tolerances are maintained, then the stated measurement performance will be met.

| Installation Tolerances | 44mm         | 70mm          |
|-------------------------|--------------|---------------|
| Gap                     | 0.5 ± 0.2 mm | 1.1 ± 0.35 mm |
| Non-concentricity       | ± 0.2 mm     | ± 0.2 mm      |


## 7.3 Metal Exclusion Zone


The rotor and stator should be mounted within the prescribed mounting tolerances while also taking into consideration the Metal Exclusion Zone, which defines the volume around the encoder where metal should not enter.

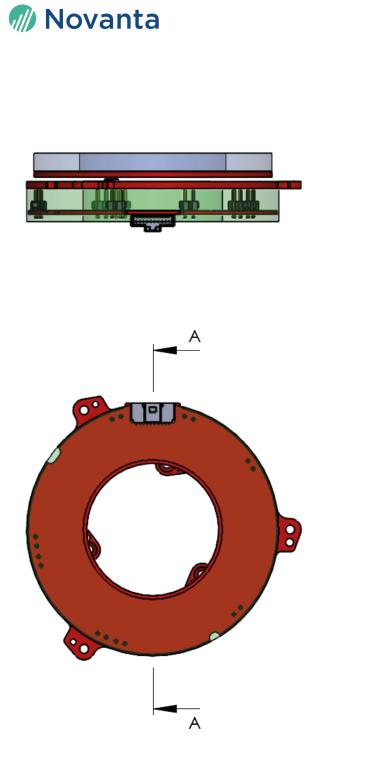
Other than the central host shaft; rotor mounting screws; and dowels, electrically conductive or magnetically permeable objects **should not** be located within 3mm of the rotor faces during operation. This metal exclusion zone could be established by designing and mounting the encoder with non-metal spacers as shown (not included). For specific guidance on incorporating IncOder

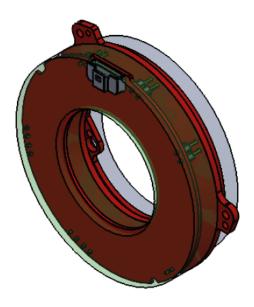


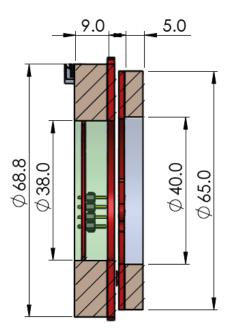
CORE into your mechanical assembly, including where metal will be present within the exclusion zone, please contact Celera Motion.






Notes:


- Failure to follow the prescribed guidance may result in a degradation of measurement performance.
- Do not route the connection cable within and between the stator-electronic PCB stack.
- Ensure isolation of the stator e-board to host mechanics.


## 7.4 Metal Exclusion Zone Example - CORE-3-70-XX1001-XXXX-PR1

The following representation displays the Metal Exclusion Zone for the IncOder CORE - 70mm variant. The green region specifies the metal exclusion zone. The rotor has been fitted with an example of a non-metal spacer.

IncOder CORE Series Datasheet





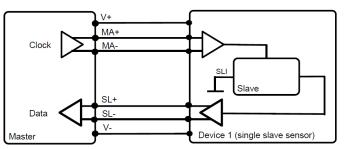


SECTION A-A

# 7.5 Zero Position and Zero Setting

The Zero Point is the datum from which angle is measured. As supplied, the IncOder CORE carries a factory Zero Point setting. The zero point is within  $+/-5^{\circ}$  of the "O" within the screen printed "Inc**O**der" logo on the rotor, aligned with the same respective feature on the stator.

The Zero Point can be changed using the Zero Set and Zero Reset lines on the electrical interface. The Zero Set signal will set the current position as the Zero Point (held in memory when power is removed). Zero Reset signal will reset the Zero Point to the factory setting (held in memory when power is removed). To use, the relevant connection should be connected to electrical ground (<0.5V) for 3 seconds at power up but left unconnected (i.e. open circuit) during operation.


# Novanta8 Communications

Notes:

- All digital communications interfaces conform to the RS422 standard.
- DATA & CLOCK inputs are not terminated with load resistors.

## 8.1 BiSS-C (unidirectional) Protocol

BiSS-C is a popular communications interface between controllers and position sensors. The IncOder BiSS-C interface is unidirectional and provides fast, compact, economic serial communications using RS422 (SSI) compatible hardware. The IncOder BiSS-C interface is a point to point configuration (a single device with a single slave), conforming to the requirements of BiSS-C Unidirectional. In this configuration, the IncOder is the only slave connected to the master (the host control system).



The Master transmits clock signals to the Slave via the MA line. The SL line carries the sensor data directly from the Slave back to the Master. The interface has only two unidirectional, differential lines (as the

IncOder permanently connects the input SLI to '0'). Parameters for the individual data channels are specified below. These parameters can be pre-programmed in the controller and referenced via an ID or

lookup table, or manually entered.

The IncOder implements a "pipelined" data output. The position (and status) returned in the SCD is from the position measurement triggered by the previous BiSS frame (provided that the frame repetition period is between 95Qs and 140Qs, as is described for the SPI1 protocol (see SPI Timing Information).

### 8.1.1 BiSS-C (unidirectional) - Product Option BIS3

| BIS3 Protocol Timing Parameters |           |      |      |      |
|---------------------------------|-----------|------|------|------|
| Symbol                          | Parameter | Min. | Max. | Unit |



| BIS3 Protocol Timing Parameters |                 |     |      |     |
|---------------------------------|-----------------|-----|------|-----|
| 1/T <sub>MA</sub>               | Clock Frequency | 600 | 2000 | kHz |
| T <sub>BISS-TIMEOUT</sub>       | BiSS Timeout    | 15  | 20   | μs  |

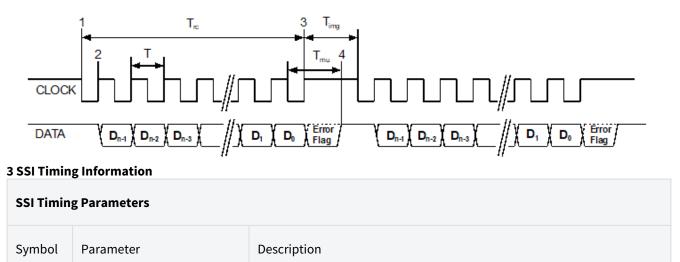
| BIS3 Protocol Data Channel Parameters |                                                                             |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Number of Bits (SCD Length)           | 30 bits                                                                     |  |  |  |
| Processing Time                       | 12 Clock Cycles (12 x T <sub>MA</sub> µs)                                   |  |  |  |
| Data Area Length & Alignment          | 24 bits                                                                     |  |  |  |
| CRC (Cyclic Redundancy Check)         | Width: 6 Bits<br>Polynomial: 0x43<br>Initial Value: 0x00<br>Output Inverted |  |  |  |

## 8.1.2 Data Area Definition

| MSB     |        |                                                                                                        |        |    |        |  |    |    |    |    | LSB | _ |
|---------|--------|--------------------------------------------------------------------------------------------------------|--------|----|--------|--|----|----|----|----|-----|---|
| D[r+11] | D[r+10 |                                                                                                        | D[r+1] | Dr | D[r-1] |  | D2 | D1 | D0 | nE | nW  |   |
| BIS3 P  | Protoc | col Data Definition                                                                                    |        |    |        |  |    |    |    |    |     |   |
| Symbo   | วโ     | Description                                                                                            |        |    |        |  |    |    |    |    |     |   |
| D21     |        | Most significant bit of the position data (if IncOder resolution is <22 bits, the LSBs are set to '0'. |        |    |        |  |    |    |    |    |     |   |

| DO | Least significant bit of the position data. |
|----|---------------------------------------------|
| nE | '1' = position valid                        |
| nW | Always '1'                                  |

### 8.1.3 Example for 18 bits resolution:


| MSB |     |     |        |    |   |   |   |   |    | LSB |
|-----|-----|-----|--------|----|---|---|---|---|----|-----|
| D17 | D16 | D15 | <br>D1 | D0 | 0 | 0 | 0 | 0 | nE | nW  |

Note: For details regarding BIS1 and BIS2 legacy variants, please contact Celera Motion.

## 8.2 SSI - Synchronous Serial Interface Protocol

SSI is a widely used serial interface between position sensors and controllers. It is based on the RS-422 hardware standard and implements a differential output for the DATA and a differential input for the CLOCK. (Note that DATA outputs and CLOCK inputs are not terminated with load resistors.)

Synchronous SSI uses a clock sequence from a controller to initiate the transmission of position data from the sensor (a Read Cycle), with the latest position data (see Specifications for internal position update rate) available for transmission after each SSI Read Cycle is completed. See timing information below:-





| т                | Clock Period           | 1/T = 100 kHz to 2 MHz                                                                                                                                                                                       |
|------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>rc</sub>  | Read Cycle Time        | Defined as (n X T) + (0.5 x T)                                                                                                                                                                               |
| T <sub>mu</sub>  | Message Update Time    | The time from last falling edge of clock to when new data is ready for transmission.<br>T <sub>mu</sub> = 20µs ± 1µs. The DATA line will be HIGH after this time indicating a new Read Cycle can be started. |
| T <sub>img</sub> | Inter-message Gap Time | Must be > T <sub>mu</sub> otherwise position data will be indeterminate.                                                                                                                                     |
| n                | Number of Bits         | The number of bits in the message (not including the Error Flag).<br>In idle state CLOCK and DATA are both HIGH.                                                                                             |

Notes

- 1. The first falling edge after  $T_{mu}$  starts the Read Cycle and the transfer of data.
- 2. Each rising edge of the CLOCK transmits the next data bit of the message, starting with Dn-1.
- 3. After the last rising edge of the clock sequence, the data line is set by the Error Flag (if supported) for period  $T_{mu}$  0.5 x T
- 4. After T<sub>mu</sub>, the latest position data is now available for transmission in the next Read Cycle see Section 5.12 for position update rate.

IncOders can support a variety of SSI protocol types in which data is transmitted depending on the requirements of the SSI controller. IncOder can be supplied with any of the following protocols – just choose what you need by selecting the relevant Product Option when ordering. If the protocol you require is not listed here then please consult Celera Motion or your local representative.

### 8.2.1 SSI - Product Options SSI1 to SSI9

| SSI1 Protocol Data Definition (n = 24) |        |                     |                                                                           |  |  |  |
|----------------------------------------|--------|---------------------|---------------------------------------------------------------------------|--|--|--|
| Bit                                    | Symbol | Definition          | Description                                                               |  |  |  |
| D23                                    | PV     | Position Valid Flag | Set to 1 when data is valid, otherwise 0 (the inverse of the ERROR FLAG). |  |  |  |



| SSI1 Prot | SSI1 Protocol Data Definition (n = 24) |                            |                                                                                                                                                                                                     |  |  |
|-----------|----------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| D22       | ZPD                                    | Zero Position Default Flag | Set to 1 when the Zero Point is at Factory Default, otherwise 0.                                                                                                                                    |  |  |
| D21 - D0  | PD[21:0]                               | Binary Position Data       | Binary position data. If resolution of device is less than 22<br>bits, then the MSBs of this field are set to 0. The LSB of this<br>field is in D0.<br>When PV is 0, PD[21:0] value is not defined. |  |  |

| SSI2 Prot | SSI2 Protocol Data Definition (n = 24) |                     |                                                                                                                                                                                                            |  |  |  |
|-----------|----------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bit       | Symbol                                 | Definition          | Description                                                                                                                                                                                                |  |  |  |
| D23-D2    | PD[21:0]                               | Position Valid Flag | Binary position data. If resolution of device is less than 22<br>bits, then the MSBs of this field are set to 0. The LSB of this<br>field is in D2. When Alarm bit is 1, PD[21:0] value is not<br>defined. |  |  |  |
| D1        | Ρ                                      | Parity Bit          | 0 indicates an even number of 1's in data (D23-D2),<br>1 indicates an odd number of 1's in data.                                                                                                           |  |  |  |
| D0        | A                                      | Alarm Bit           | 0 indicates normal operation, 1 indicates error condition.                                                                                                                                                 |  |  |  |

| SSI3 Protocol Data Definition (n = 16) |        |            |             |  |  |  |
|----------------------------------------|--------|------------|-------------|--|--|--|
| Bit                                    | Symbol | Definition | Description |  |  |  |



| SSI3 Prot | SSI3 Protocol Data Definition (n = 16) |                      |                                                                                                                                                                      |  |  |  |  |
|-----------|----------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| D15-D0    | PD[15:0]                               | Binary Position Data | Binary position data. When error flag is 1, PD[15:0] value is<br>not defined.<br>Note: The use of SSI3 limits the measurement resolution<br>to a maximum of 16 bits. |  |  |  |  |

| SSI4 Protocol Data Definition (n = 32) |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|----------------------------------------|----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit                                    | Symbol   | Definition                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| D31                                    | PV       | Position Valid Flag        | Set to 1 when position data valid, otherwise 0 (inverse of ERROR FLAG).                                                                                                                                                                                                                                                                                                                                                                   |  |
| D30                                    | ZPD      | Zero Position Default Flag | Set to 1 when the Zero Point is at Factory Default, otherwise 0.                                                                                                                                                                                                                                                                                                                                                                          |  |
| D29-D11                                | PD[18,0] | Binary Position Data       | If resolution of device is less than 19 bits, then the MSBs<br>of this field are set to 0. The LSB of this field is in D11.<br>When PV is 0, PD[18:0] value is not defined.                                                                                                                                                                                                                                                               |  |
| D10-D0                                 | TS[10,0] | Time Stamp Data            | The value of the Time Stamp counter when the position<br>was measured. This data is always valid.<br>The Time Stamp counter is a continuously incrementing<br>counter in the range: 0.00ms to 20.47ms (at which point it<br>restarts at 0.00ms). It has a resolution of 10us, with an<br>accuracy better than 1% (based on the system oscillator).<br>Note: the use of SSI4 limits the measurement resolution<br>to a maximum of 19 bits. |  |



| SSI5 Protocol Data Definition (n = 16) |          |                         |                                                                                                                                                                         |  |  |
|----------------------------------------|----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit                                    | Symbol   | Definition              | Description                                                                                                                                                             |  |  |
| D15-D0                                 | PD[15:0] | Gray Code Position Data | Gray Code Position Data. When error flag is 1, PD[15:0]<br>value is not defined.<br>Note: The use of SSI5 limits the measurement resolution<br>to a maximum of 16 bits. |  |  |

| SSI6 Pro | SSI6 Protocol Data Definition (n = 32) |                            |                                                                                                                                                                                                                                                                                                        |  |  |  |
|----------|----------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bit      | Symbol                                 | Definition                 | Description                                                                                                                                                                                                                                                                                            |  |  |  |
| D31-D24  | CRC[7:0]                               | Cyclic Redundancy Check    | CRC-8: To verify transmission, calculate the CRC of the<br>bottom 24 bits of the message. The resulting CRC should<br>be the same as the received CRC field.<br>The following parameters define CRC-8:<br>Polynomial 0x97<br>Initial data 0x00<br>MSB First (not reversed)<br>No final XOR calculation |  |  |  |
| D23      | PV                                     | Position Valid Flag        | Set to 1 when position data is valid, otherwise 0 (the inverse of the ERROR FLAG).                                                                                                                                                                                                                     |  |  |  |
| D22      | ZPD                                    | Zero Position Default Flag | Set to 1 when the Zero Point is at Factory Default, otherwise 0.                                                                                                                                                                                                                                       |  |  |  |
| D21-D0   | PD[21:0]                               | Binary Position Data       | Binary position data. If resolution of device is less than<br>22 bits, then the MSBs of this field are set to 0. The LSB of<br>this field is in D0.<br>When PV is 0, PD[21:0] value is not defined.                                                                                                    |  |  |  |



| SSI7 Prot | SSI7 Protocol Data Definition (n = 30) |                      |                                                                                                                                                                                                   |  |  |
|-----------|----------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit       | Symbol                                 | Definition           | Description                                                                                                                                                                                       |  |  |
| D29-D24   | -                                      | '0'                  | Data always 0.                                                                                                                                                                                    |  |  |
| D23-D2    | PD[21:0]                               | Binary Position Data | Binary position data. If resolution of device is less than 22 bits, then the MSBs of this field are set to 0. The LSB of this field is in D2. When Alarm bit is 1, PD[21:0] value is not defined. |  |  |
| D1        | Ρ                                      | Parity Bit           | 0 indicates an even number of 1's in data (D23-D2)<br>1 indicates an odd number of 1's in data.                                                                                                   |  |  |
| D0        | A                                      | Alarm Bit            | 0 indicates normal operation, 1 indicates error condition.                                                                                                                                        |  |  |

| SSI8 Protocol Data Definition (n = 18) |          |                         |                                                                                                                                                                          |  |  |
|----------------------------------------|----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit                                    | Symbol   | Definition              | Description                                                                                                                                                              |  |  |
| D17-D0                                 | PD[17:0] | Gary Code Position Data | Gray code, position data. When ERROR FLAG is 1,<br>PD[17:0] value is not defined.<br>Note: the use of SSI8 limits the measurement resolution<br>to a maximum of 18 bits. |  |  |

| SSI9 Protocol Data Definition (n = 32) |        |            |             |  |  |
|----------------------------------------|--------|------------|-------------|--|--|
| Bit                                    | Symbol | Definition | Description |  |  |



#### SSI9 Protocol Data Definition (n = 32)

| D31     | PV       | Position Valid Flag        | Set to 1 when position data valid, otherwise 0 (inverse of ERROR FLAG).                                                                                                                                                                                                                                                                              |
|---------|----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D30     | ZPD      | Zero Position Default Flag | Set to 1 when the Zero Point is at Factory Default, otherwise 0.                                                                                                                                                                                                                                                                                     |
| D29-D11 | PD[18:0] | Binary Position Data       | If resolution of device is <19 bits, then the MSBs of this<br>field are set to 0. The LSB of this field is in D11. When PV<br>is 0, PD[18:0] value is not defined.                                                                                                                                                                                   |
| D10-D0  | TS[10:0] | Time Stamp Data            | The value of the Time Stamp counter when the position<br>was measured. This data is always valid. The Time<br>Stamp counter is a continuously incrementing counter<br>in the range: 0.00ms to 2.047ms (at which point it<br>restarts at 0.00ms). It has a resolution of 1us, with an<br>accuracy better than 1% (based on the system<br>oscillator). |

## 8.3 Asynchronous Serial Interface

This section describes the communications interface for IncOders with ASI1 and ASI2 serial protocols. Data is transmitted by the IncOder continuously formatted into Frames. Each Frame consists of a number of 8 bit data words. Each 8 Bit data word (or byte) is transmitted from a standard UART using N-8-1 (no parity, 8 data bits, 1 stop bit). ASI1 has a Baud rate of 230400 and ASI2 has a Baud rate of 921600. See below for the data format of each transmitted data word. ASI1 Frames are transmitted at a rate of 3.33kHz nominal. ASI2 frames are transmitted at a rate of 10kHz nominal (same rate as Internal Position Update Period).

| Start<br>Bit | DO D1 | D2 | D3 | D4 | D5 | D6 | D7 | Stop<br>Bit |
|--------------|-------|----|----|----|----|----|----|-------------|
|--------------|-------|----|----|----|----|----|----|-------------|

### 8.3.1 Asynchronous Serial Interface - Product Options ASI1, ASI2

The following is the Asynchronous Serial Data protocol specified with the ASI1 or ASI2 Product Option. Each frame is defined as 6 bytes and the data format is defined as follows:

# Movanta

| D7 | D6 | D5  | D4      | D3        | D2 | D1        | DO     |
|----|----|-----|---------|-----------|----|-----------|--------|
| 1  | PV | ZPD | 0       | 0         |    | PD[21:19] |        |
|    |    |     |         |           |    |           |        |
| D7 | D6 | D5  | D4      | D3        | D2 | D1        | DO     |
| 0  |    |     |         | PD[18:12] |    |           |        |
|    |    |     |         |           |    |           |        |
| D7 | D6 | D5  | D4      | D3        | D2 | D1        | DO     |
| 0  |    |     |         | PD[11:5]  |    |           |        |
|    |    |     |         |           |    |           |        |
| D7 | D6 | D5  | D4      | D3        | D2 | D1        | DO     |
| 0  |    |     | PD[4:0] |           |    | CRC[      | 15:14] |
|    |    |     |         |           |    |           |        |
| D7 | D6 | D5  | D4      | D3        | D2 | D1        | DO     |
| 0  |    |     |         | CRC[13:7] |    |           |        |
|    |    |     |         |           |    |           |        |
| D7 | D6 | D5  | D4      | D3        | D2 | D1        | DO     |
| 0  |    |     |         | CRC[6:0]  |    |           |        |

#### Note: D7[1] is transmitted first.

| ASI1 / ASI2 Protocol Data Definition |                            |                                                                                                                             |  |
|--------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| Symbol                               | Definition                 | Description                                                                                                                 |  |
| PV                                   | Position Valid Flag        | Set to 1 when position data valid, otherwise 0.                                                                             |  |
| ZPD                                  | Zero Position Default Flag | Set to 1 when the Zero Point is at Factory Default, otherwise 0.                                                            |  |
| PD[21:0]                             | IncOder Position Data      | If resolution of device is <22 bits, then the MSBs of this field are set to 0. When PV is 0, PD[21:0] value is not defined. |  |



| CRC[15:0] | Cyclic Redundancy Check<br>CRC-16 | To verify transmission, calculate the CRC of all 48 bits of the<br>message but with CRC[15:0] set to 0. The resulting 16 bit CRC result<br>should be the same as the received CRC[15:0].<br>Use the following CRC-16 parameters:<br>• Polynomial 0x8005<br>• Initial Data 0x0000<br>• MSB first (not reversed)<br>• No final XOR calculation. |
|-----------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# 8.4 Serial Peripheral Interface

This section describes the communications interface for IncOders with SPI1 (Serial Peripheral Interface) serial protocols. SPI is a widely used serial interface between micro processors/controllers and peripherals. SPI uses a clock sequence from a master to control the transmission of data from the IncOder. IncOders with SPI data interface conform to the RS422 hardware specification.

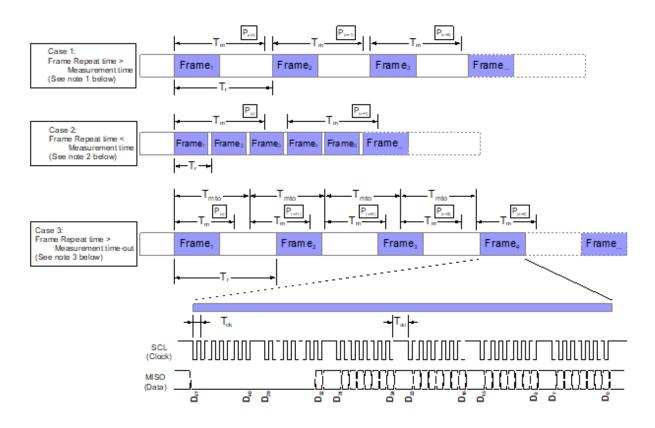
SPI Clock Polarity is defined so that the CLOCK idle state is HIGH and the Clock Phase is defined so that the data is captured on the falling edge of CLOCK, and the data is propagated on the rising edge of CLOCK. This is commonly depicted as CPOL=1, CPHA=0 (also depicted as UCCKPL=1, UCCKPH=1).

For SPI communication interface, the acceptable clock frequency is 100kHz to 5MHz.

### 8.4.1 Serial Peripheral Interface (SPI) - Product Option SPI1

The SPI1 IncOder protocol specifies that each data frame consists of 6 bytes of data (each of 8 bits, 48 bits in total) containing the position, status flags and CRC.

| SPI1 Protocol Data Definition |        |                            |                                                                  |  |  |
|-------------------------------|--------|----------------------------|------------------------------------------------------------------|--|--|
| Bit                           | Symbol | Definition                 | Description                                                      |  |  |
| D47-D33                       | SBZ    | Set Bit to Zero            | These bits will always be Zero.                                  |  |  |
| D32                           | ZPD    | Zero Position Default Flag | Set to 1 when the Zero Point is at Factory Default, otherwise 0. |  |  |




#### **SPI1 Protocol Data Definition**

| D31    | PV       | Position Valid Flag        | Set to 1 when the position data is valid, otherwise 0.                                                                                                                                                                                                                                                                                                                          |
|--------|----------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D30    | PS       | Position Synchronized Flag | Set to 1 when the position measurement was<br>triggered by a previous SPI Frame. Set to 0 when the<br>position measurement was triggered by a<br>Measurement Time-out (see SPI Timing Information,<br>Case 1). Use this flag to ensure that the IncOder has<br>synchronised position measurements to the SPI<br>Frames.                                                         |
| D29-D8 | PD[21:0] | Binary Position Data       | If resolution of device is less than 22 bits, then the<br>most significant bits of this field are set to 0. The LSB<br>of this field is in D0. When PV is 0, PD[21:0] value is<br>not defined.                                                                                                                                                                                  |
| D7     | SD       | Stale Data Flag            | Set to 1 when the position data has been transmitted<br>at least once before. Set to 0 when the position data<br>has not been transmitted before. Use this flag to<br>detect when a new measurement has been<br>completed (see SPI Timing Information, Case 2).                                                                                                                 |
| D6-D0  | CRC[6:0] | Cyclic Redundancy Check    | To verify transmission, calculate the CRC of D7-D32.<br>The CRC is calculated using a 32 bit word (or 4 bytes)<br>with D7 shifted in to the Least Significant Bit and the<br>6 Most Significant Bits set to '0' as required.<br>Use the following CRC-16 parameters:<br>• Polynomial 0x5B<br>• Initial Data 0x0000<br>• MSB first (not reversed)<br>• No final XOR calculation. |

# Movanta

## 8.4.2 SPI1 Timing Information



#### **4 SPI1 Timing Information**

| Timings determined by Controller (SPI Master): |                       |                                                                                                            |  |  |
|------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------|--|--|
| T <sub>ck</sub>                                | Clock Period          | 1/T = 100kHz to 5MHz                                                                                       |  |  |
| T <sub>cki</sub>                               | Clock Idle Period     | Time between bytes during which CLOCK is idle.<br>T <sub>cki</sub> should be <t<sub>ckiMAX = 10µs.</t<sub> |  |  |
| T <sub>r</sub>                                 | Frame Repetition Rate |                                                                                                            |  |  |



### Timings determined by the IncOder (SPI Slave):

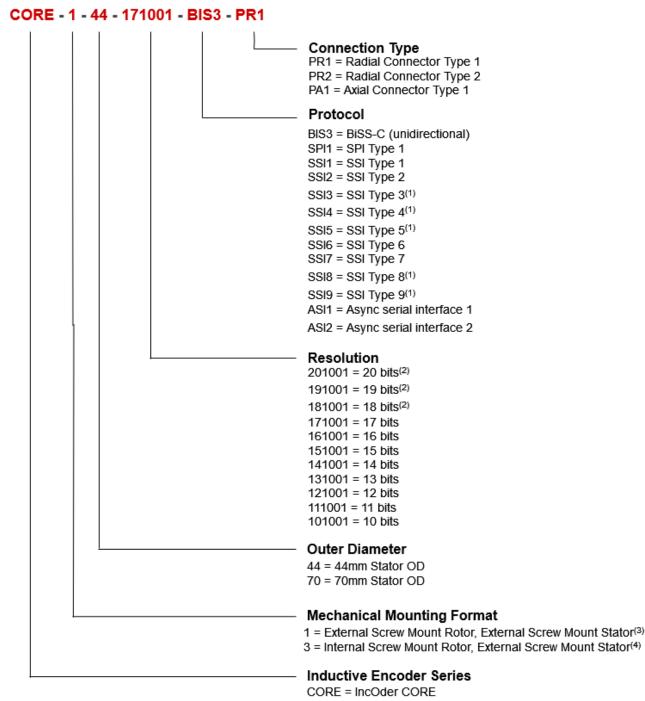
| T <sub>m</sub>   | Position Measurement Time     | The time from the start of a position measurement<br>to when the position and status is ready for<br>transmission.<br>90µs ≤ T <sub>m</sub> ≤ 95µs                |  |
|------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| T <sub>mto</sub> | Position Measurement Time-out | The time after a position measurement has been<br>triggered that the IncOder will automatically<br>trigger a new measurement.<br>135µs ≤ T <sub>mto</sub> ≤145µs. |  |

Notes:

- 1. The IncOder will always attempt to trigger a new position measurement when a new SPI frame is started by the host. This will always be the case when  $T_r$  is greater than  $T_m$  and less than  $T_{mto}$ .
- 2. If a position measurement has already been triggered when a new SPI frame is started by the host, then a new position measurement will not be re-triggered. This may be the case when T<sub>r</sub> is less than T<sub>m</sub>
- 3. If the Host does not start a new SPI frame within time  $T_{mto}$  from the previous frame (the case when  $T_r$  is greater than  $T_{mto}$ ), then the IncOder will automatically trigger a new position measurement.
- 4. In all cases, the IncOder will transmit the most recently completed measured position and status (see table below).
- When CLOCK is idle for at least T<sub>ckimax</sub>, then the IncOder SPI interface will reset. The first falling edge on CLOCK after T<sub>ckimax</sub> will start the transmission of a new frame. This can be useful if the SPI host and slave (IncOder) lose Frame/Byte synchronisation (detected by invalid CRC).

| Frame Number | Position<br>transmitted (Case<br>1) | Position<br>transmitted (Case<br>2) | Position<br>transmitted<br>(Case 3) |
|--------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Frame 1      | P <sub>(n-1)</sub>                  | P <sub>(n-1)</sub>                  | P <sub>(n-1)</sub>                  |
| Frame 2      | P <sub>(n)</sub>                    | P <sub>(n-1)</sub>                  | P <sub>(n)</sub>                    |




| Frame Number | Position<br>transmitted (Case<br>1) | Position<br>transmitted (Case<br>2) | Position<br>transmitted<br>(Case 3) |
|--------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Frame 3      | P <sub>(n+1)</sub>                  | P <sub>(n-1)</sub>                  | P <sub>(n+1)</sub>                  |
| Frame 4      |                                     | P <sub>(n)</sub>                    | P <sub>(n+3)</sub>                  |
| Frame 5      |                                     | P <sub>(n)</sub>                    |                                     |

# Novanta9 How to Order

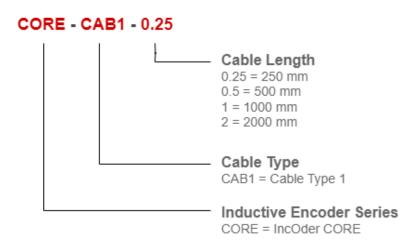
## 9.1 IncOder CORE Part Numbers

Note: IncOder is supplied as a rotor and stator pair. Mounting screws and dowels are not included.

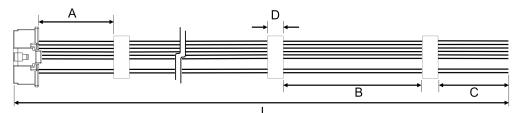




Notes



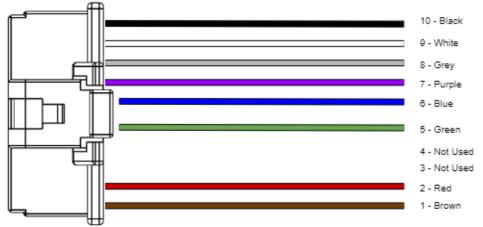

- 1. For SSI protocol options, maximum resolution limited communications protocol type See SSI Protocol Options for details.
- 2. Maximum resolution available for CORE-x-44 is 17 bits.
- 3. Mechanical Mounting Format Option 1 only available for CORE-x-44 size.
- 4. Mechanical Mounting Format Option 3 only available for CORE-x-70 size.


# Novanta10 Cable Information

### **10.1 Cable Part Number**

Mating connector and tinned wires on other end.




## 10.2 Cable Drawing



| Symbol | Description                                     |  |
|--------|-------------------------------------------------|--|
| L      | Total Cable Length ( +/- 5 % )                  |  |
| А      | Rear-of-connector to edge-of-sleeve: 35 - 40 mm |  |

| Symbol | Description                                     |
|--------|-------------------------------------------------|
| В      | Sleeves spaced every 100 - 150 mm (as required) |
| С      | Edge-of-sleeve to wire-ends: 35 - 40 mm         |
| D      | Sleeve Width: 20 mm                             |

# **10.3 Cable Wire Assignment**



| IncOder CORE Cable Connector |                                  |          |                                                                                                                                                                |
|------------------------------|----------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Molex                        | Molex 10-way PicoClasp Connector |          |                                                                                                                                                                |
| Pin                          | Colour                           | Signal   | Function                                                                                                                                                       |
| 1                            | Brown                            | Zero Set | Optional Zero Set function. To use, connect to electrical ground (<0.5V) for >3 seconds at power up but left unconnected (i.e. open circuit) during operation. |



| 2  | Red    | Zero Reset          | Optional Zero Reset function. To use, connect to electrical ground (<0.5V) for >3 seconds at power up but left unconnected (i.e. open circuit) during operation. |
|----|--------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  |        | Reserved            | Reserved for future use.                                                                                                                                         |
| 4  |        | Reserved            | Reserved for future use.                                                                                                                                         |
| 5  | Green  | DATA A              | Absolute Encoder Output (Data A / Data +)                                                                                                                        |
| 6  | Blue   | CLOCK A             | Clock Input (Clock A / Clock +)                                                                                                                                  |
| 7  | Purple | DATA B              | Absolute Encoder Output (Data B / Data -)                                                                                                                        |
| 8  | Grey   | CLOCK B             | Clock Input (Clock B / Clock -)                                                                                                                                  |
| 9  | White  | 0V                  | Digital signal ground.                                                                                                                                           |
| 10 | Black  | V <sub>supply</sub> | Supply 4.5-5.5V, 8-12V, <100mA                                                                                                                                   |

# Novanta11 Warranty / Remedy

Celera Motion warrants goods of its manufacture as being free of defective materials and faulty workmanship for 1 year from date of purchase. Celera Motion standard product warranty applies unless agreed otherwise by Celera Motion in writing. Please refer to Celera Motion or local representative for warranty details. If warranted goods are returned to Celera Motion during the warranty period then Celera Motion will repair or replace, at its option, without charge those items that it finds defective. The foregoing is the buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Celera Motion be liable for consequential, special or indirect damages.

While Celera Motion provides application assistance personally, through our literature, web-site and partners, it is the customer's responsibility to determine the suitability of the product in the application.

Specifications may change without notice. Quoted data is derived from test, analysis or design similarity. The information provided by Celera Motion in this Product Guide is believed to be accurate and reliable as of this printing, however, Celera Motion assumes no responsibility for its use.

#### WARNING. PERSONAL INJURY.

Do not use these products as safety or emergency stop devices or in any application where failure of the product could result in personal injury. Failure to comply to these instructions could result in death or serious injury.

#### WARNING. PERSONAL INJURY.

Do not use these products in any application where there is the potential for combustion or explosion with flammable gases, dust or liquids. Failure to comply to these instructions could result in death or serious injury.